Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 33(25)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35299168

RESUMO

Stretchable strain sensor, an important paradigm of wearable sensor which can be attached onto clothing or even human skin, is widely used in healthcare, human motion monitoring and human-machine interaction. Pattern-available and facile manufacturing process for strain sensor is pursued all the time. A carbon nanotube (CNT)/silver nanowire (AgNW)-based stretchable strain sensor fabricated by a facile process is reported here. The strain sensor exhibits a considerable Gauge factor of 6.7, long-term durability (>1000 stretching cycles), fast response and recovery (420 ms and 600 ms, respectively), hence the sensor can fulfill the measurement of finger movement. Accordingly, a smart glove comprising a sensor array and a flexible printed circuit board is assembled to detect the bending movement of five fingers simultaneously. Moreover, the glove is wireless and basically fully flexible, it can detect the finger bending of wearer and display the responses distinctly on an APP of a smart phone or a host computer. Our strain senor and smart glove will broaden the materials and applications of wearable sensors.


Assuntos
Nanotubos de Carbono , Nanofios , Dispositivos Eletrônicos Vestíveis , Humanos , Movimento , Prata
2.
Opt Express ; 25(10): 10779-10790, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788767

RESUMO

Based on photon-phonon nonlinear interaction, a scheme of controllable photon-phonon converters is proposed at single-quantum level in a composed quadratically coupled optomechanical system. With the assistance of the mechanical oscillator, the Kerr nonlinear effect between photon and phonon is enhanced so that the single-photon state can be converted into the phonon state with high fidelity even under the current experimental condition that the single-photon coupling rate is much smaller than mechanical frequency (g ≪ ωm). The state transfer protocols and their transfer fidelity are discussed analytically and numerically. A multi-path photon-phonon converter is designed by combining the optomechanical system with low frequency resonators, which can be controlled by experimentally adjustable parameters. This work provides us a potential platform for quantum state transfer and quantum information.

3.
Microsyst Nanoeng ; 6: 30, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34567644

RESUMO

Highly sensitive and selective hydrogen sulfide (H2S) sensors based on hierarchical highly ordered SnO2 nanobowl branched ZnO nanowires (NWs) were synthesized via a sequential process combining hard template processing, atomic-layer deposition, and hydrothermal processing. The hierarchical sensing materials were prepared in situ on microelectromechanical systems, which are expected to achieve high-performance gas sensors with superior sensitivity, long-term stability and repeatability, as well as low power consumption. Specifically, the hierarchical nanobowl SnO2@ZnO NW sensor displayed a high sensitivity of 6.24, a fast response and recovery speed (i.e., 14 s and 39 s, respectively), and an excellent selectivity when detecting 1 ppm H2S at 250 °C, whose rate of resistance change (i.e., 5.24) is 2.6 times higher than that of the pristine SnO2 nanobowl sensor. The improved sensing performance could be attributed to the increased specific surface area, the formation of heterojunctions and homojunctions, as well as the additional reaction between ZnO and H2S, which were confirmed by electrochemical characterization and band alignment analysis. Moreover, the well-structured hierarchical sensors maintained stable performance after a month, suggesting excellent stability and repeatability. In summary, such well-designed hierarchical highly ordered nanobowl SnO2@ZnO NW gas sensors demonstrate favorable potential for enhanced sensitive and selective H2S detection with long-term stability and repeatability.

4.
ACS Appl Mater Interfaces ; 12(12): 14136-14144, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32131586

RESUMO

Flexible pressure sensing is required for the excellent sensing performance and dexterous manipulation of the measured objects in their potential applications. Particularly, the ability to measure and discriminate the direction of force, contact surface, and contact location in real time is crucial for robotics with tactile feedback. Herein, a three-dimensional elastic porous carbon nanotube (CNT) sponge is synthesized by chemical vapor deposition, which is successfully applied in the piezoresistive sensor. In situ scanning electron microscopy study intuitively illustrates the characteristics that the microfibers of the CNT sponge distort and contact with each other under an external force. As a result, new conductive paths are created at the contact points between the CNT microfibers, which provides a basic sensing principle for a piezoresistive sensor. The CNT sponge-based sensor has an ultrahigh sensitivity in a wide pressure range (0-4 kPa for 4015.8 kPa-1), a rapid response time of 120 ms, and excellent durability over 5000 cycles. Moreover, a finlike flexible double-sided electronic skin (e-skin) is fabricated by a simple method to achieve force direction detection, which has potential applications in intelligent wearable devices and human-machine interaction.


Assuntos
Técnicas Biossensoriais , Torção Mecânica , Tato/fisiologia , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Humanos , Fenômenos Mecânicos , Nanotubos de Carbono/química , Porosidade , Pressão , Robótica
5.
J Colloid Interface Sci ; 568: 81-88, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32088454

RESUMO

Development of high-performance ammonia (NH3) sensor is imperative for monitoring NH3 in the living environment. In this work, to obtain a high performance NH3 gas sensor, structurally well-defined WO3@SnO2 core shell nanosheets with a controllable thickness of SnO2 shell layer have been employed as sensing materials. The prepared core shell nanosheets were used to obtain a miniaturized gas sensor based on micro-electro-mechanical system (MEMS). By tuning the thickness of SnO2 layer via atomic layer deposition, a series of WO3@SnO2 core-shell nanosheets with tunable sensing properties were realized. Particularly, the sensor base on the fabricated WO3@SnO2 nanosheets with 20-nm SnO2 shell layer demonstrated superior gas sensing performance with the highest response (1.55) and selectivity toward 15 ppm NH3 at 200 °C. This remarkable enhancement of NH3 sensing ability could be ascribed to the formation of unique WO3-SnO2 core-shell heterojunction structure. The detailed mechanism was elucidated by the heterojunction-depletion model with the help of specific band alignment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA