Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Immunol ; 200(4): 1513-1526, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29305435

RESUMO

Agonists to the TNF/TNFR costimulatory receptors CD134 (OX40) and CD137 (4-1BB) elicit antitumor immunity. Dual costimulation with anti-CD134 plus anti-CD137 is particularly potent because it programs cytotoxic potential in CD8+ and CD4+ T cells. Cytotoxicity in dual-costimulated CD4 T cells depends on the T-box transcription factor eomesodermin (Eomes), which we report is induced via a mechanism that does not rely on IL-2, in contrast to CD8+ CTL, but rather depends on the CD8 T cell lineage commitment transcription factor Runx3, which supports Eomes expression in mature CD8+ CTLs. Further, Eomes and Runx3 were indispensable for dual-costimulated CD4 T cells to mediate antitumor activity in an aggressive melanoma model. Runx3 is also known to be expressed in standard CD4 Th1 cells where it fosters IFN-γ expression; however, the CD4 T cell lineage commitment factor ThPOK represses transcription of Eomes and other CD8 lineage genes, such as Cd8a Hence, CD4 T cells can differentiate into Eomes+ cytotoxic CD4+CD8+ double-positive T cells by terminating ThPOK expression. In contrast, dual-costimulated CD4 T cells express Eomes, despite the continued expression of ThPOK and the absence of CD8α, indicating that Eomes is selectively released from ThPOK repression. Finally, although Eomes was induced by CD137 agonist, but not CD134 agonist, administered individually, CD137 agonist failed to induce CD134-/- CD4 T cells to express Eomes or Runx3, indicating that both costimulatory pathways are required for cytotoxic Th1 programming, even when only CD137 is intentionally engaged with a therapeutic agonist.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Melanoma Experimental/imunologia , Proteínas com Domínio T/biossíntese , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Diferenciação Celular/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/imunologia , Imunoterapia , Ativação Linfocitária/imunologia , Melanoma Experimental/metabolismo , Camundongos , Camundongos Transgênicos , Receptores OX40/agonistas , Receptores OX40/imunologia , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
2.
Carcinogenesis ; 39(3): 429-438, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29206907

RESUMO

Familial adenomatous polyposis (FAP) is a genetic disorder characterized by the development of hundreds of polyps throughout the colon. Without prophylactic colectomy, most individuals with FAP develop colorectal cancer at an early age. Treatment with EPA in the free fatty acid form (EPA-FFA) has been shown to reduce polyp burden in FAP patients. Since high-purity EPA-FFA is subject to rapid oxidation, a stable form of EPA compound has been developed in the form of magnesium l-lysinate bis-eicosapentaenoate (TP-252). We assessed the chemopreventive efficacy of TP-252 on intestinal tumor formation using ApcΔ14/+ mice and compared it with EPA-FFA. TP-252 was supplemented in a modified AIN-93G diet at 1, 2 or 4% and EPA-FFA at 2.5% by weight and administered to mice for 11 weeks. We found that administration of TP-252 significantly reduced tumor number and size in the small intestine and colon in a dose-related manner and as effectively as EPA-FFA. To gain further insight into the cancer protection afforded to the colon, we performed a comprehensive lipidomic analysis of total fatty acid composition and eicosanoid metabolites. Treatment with TP-252 significantly decreased the levels of arachidonic acid (AA) and increased EPA concentrations within the colonic mucosa. Furthermore, a classification and regression tree (CART) analysis revealed that a subset of fatty acids, including EPA and docosahexaenoic acid (DHA), and their downstream metabolites, including PGE3 and 14-hydroxy-docosahexaenoic acid (HDoHE), were strongly associated with antineoplastic activity. These results indicate that TP-252 warrants further clinical development as a potential strategy for delaying colectomy in adolescent FAP patients.


Assuntos
Neoplasias do Colo/patologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Polipose Adenomatosa do Colo/complicações , Animais , Quimioprevenção/métodos , Neoplasias do Colo/etiologia , Neoplasias do Colo/prevenção & controle , Estabilidade de Medicamentos , Ácido Eicosapentaenoico/química , Ácidos Graxos , Feminino , Masculino , Camundongos , Camundongos Mutantes
3.
Cancer Causes Control ; 29(7): 667-674, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29846845

RESUMO

PURPOSE: Excess dietary fat consumption is strongly associated with the risk of colorectal cancer, but less is known about its role in the earliest stages of carcinogenesis, particularly within the proximal colon. In the following case-control study, we evaluated the relationship between the intake of dietary fats and the frequency of early proximal neoplasia [aberrant crypt foci (ACF) or polyps], detectable by high-definition colonoscopy with contrast dye-spray. METHODS: Average-risk screening individuals underwent a high-definition colonoscopy procedure as part of larger ongoing clinical study of precancerous lesions in the proximal colon. Dietary fat intake was assessed using the Block Brief Food Frequency Questionnaire, which estimates average dietary intake based on 70 food items. The diets of individuals with no endoscopically identifiable lesions (n = 36) were compared to those with either ACF or polyps detected in the proximal colon. RESULTS: In multivariate analysis, high dietary intake of total polyunsaturated fatty acids (PUFAs) and intake of omega-6 and omega-3 fatty acids were positively associated with neoplastic lesions in the proximal colon. When comparing ACF and polyp groups separately, a positive association was observed for both proximal polyps (OR 2.28; CI 1.16-7.09) and ACF (OR 2.86; CI 1.16-7.09) for total PUFA intake. Furthermore, the prevalence of proximal ACF was increased with higher intake of omega-6 (OR 3.54; CI 1.32-9.47) and omega-3 fatty acids (OR 2.29; CI 1.02-5.13), although there was no discernible difference in the omega-6/omega-3 ratio. CONCLUSIONS: These results suggest that dietary PUFAs may be positively associated with risk of early neoplasia in the proximal colon. This study provides further evidence that dietary PUFA composition may play an important role in altering the microenvironment within the human colon.


Assuntos
Colonoscopia/métodos , Neoplasias Colorretais/epidemiologia , Gorduras na Dieta , Ácidos Graxos Ômega-3/administração & dosagem , Idoso , Estudos de Casos e Controles , Dieta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Microambiente Tumoral
4.
Clin Cancer Res ; 29(16): 2979-2987, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36996322

RESUMO

PURPOSE: Acquired RET fusions have been reported at resistance to treatment with EGFR inhibitors in EGFR-mutant non-small cell lung cancer (NSCLC); however, a multicenter cohort of patients with EGFR-mutant lung cancers treated with osimertinib and selpercatinib for RET fusion-mediated osimertinib resistance has not previously been published. PATIENTS AND METHODS: Patients who received selpercatinib in combination with osimertinib on a prospective expanded access clinical trial (NCT03906331) and single-patient compassionate use programs across five countries were centrally analyzed. All patients had advanced EGFR-mutant NSCLC with a RET fusion detected from tissue or plasma following osimertinib therapy. Clinicopathologic and outcomes data were collected. RESULTS: Fourteen patients with EGFR-mutant and RET fusion-positive lung cancers who experienced prior progression on osimertinib received osimertinib and selpercatinib. EGFR exon 19 deletions (±T790M, 86%) and non-KIF5B fusions (CCDC6-RET 50%, NCOA4-RET 36%) predominated. Osimertinib 80 mg daily and selpercatinib 80 mg twice daily were the most commonly administered dosages. The response rate, disease control rate, and median treatment duration were 50% [95% confidence interval (CI), 25%-75%, n = 12], 83% (95% CI, 55%-95%), and 7.9 months (range, 0.8-25+), respectively. Resistance was complex, involving EGFR on-target (EGFR C797S), RET on-target (RET G810S), and off-target (EML4-ALK/STRN-ALK, KRAS G12S, BRAF V600E) mechanisms; RET fusion loss; or polyclonal mechanisms. CONCLUSIONS: For patients with EGFR-mutant NSCLC with an acquired RET fusion as a mechanism of EGFR inhibitor resistance, the addition of selpercatinib to osimertinib was feasible and safe and offered clinical benefit, supporting the prospective evaluation of this combination. See related commentary by Krebs and Popat, p. 2951.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/administração & dosagem , Compostos de Anilina/farmacologia , Proteínas Proto-Oncogênicas c-ret/genética
5.
Cancer Prev Res (Phila) ; 13(1): 1-14, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31748255

RESUMO

Our understanding of the role of folate one-carbon metabolism in colon carcinogenesis remains incomplete. Previous studies indicate that a methyl donor-deficient (MDD) diet lacking folic acid, choline, methionine, and vitamin B12 is associated with long-lasting changes to the intestinal epithelium and sustained tumor protection in Apc-mutant mice. However, the metabolic pathways by which the MDD diet affects these changes are unknown. Colon samples harvested from ApcΔ14/+ mice fed the MDD diet for 18 weeks were profiled using a GC-MS and LC-MS/MS metabolomics platform. Random forest and pathway analyses were used to identify altered metabolic pathways, and associated gene expression changes were analyzed by RT-PCR. Approximately 100 metabolites affected by the MDD diet were identified. As expected, metabolites within the methionine cycle, including methionine (-2.9-fold, P < 0.001) and betaine (-3.3-fold, P < 0.001), were reduced. Elevated homocysteine (110-fold, P < 0.001) was associated with increased flux through the transsulfuration pathway. Unexpectedly, levels of deoxycholic acid (-4.5-fold, P < 0.05) and several other secondary bile acids were reduced. There were also unexpected reductions in the levels of carnitine (-2.0-fold, P < 0.01) and a panel of acylcarnitines involved in fatty acid ß-oxidation. Finally, metabolites involved in redox balance, including ascorbate and hypotaurine, were found to be persistently elevated. These findings provide clues to the molecular changes underlying MDD-mediated tumor protection and identify regulatable metabolic pathways that may provide new targets for colon cancer prevention and treatment. IMPLICATIONS: Metabolomic profiling reveals molecular changes underlying MDD-induced tumor protection and may provide new targets for colorectal cancer prevention and treatment.


Assuntos
Neoplasias do Colo/prevenção & controle , Comportamento Alimentar/fisiologia , Metionina/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Cromatografia Líquida de Alta Pressão , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Redes e Vias Metabólicas/fisiologia , Metabolômica , Camundongos , Mutação , Oxirredução , Espectrometria de Massas em Tandem
6.
Cancer Prev Res (Phila) ; 9(10): 812-820, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27530130

RESUMO

The role of folate one-carbon metabolism in colorectal cancer development is controversial, with nutritional intervention studies producing conflicting results. It has been reported that ApcMin/+ mice maintained on a diet deficient in the methyl donors folic acid, methionine, choline, and vitamin B12, and supplemented with homocysteine, show a greater than 95% reduction in intestinal tumor development. The present study extends these findings and shows that tumor protection afforded by dietary methyl donor deficiency (MDD) is long-lasting. After 11 weeks of MDD, tumor protection persisted for at least an additional 7 weeks of methyl donor repletion (22.2 ± 3.5 vs. 70.2 ± 4.6 tumors per mouse; P < 0.01). Sustained tumor protection was associated with a reduction in intestinal crypt length (26%, P < 0.01), crypt cell division and crypt fission, and an increase in apoptosis of both normal crypts and tumors (4.9- and 3.2-fold, respectively, P < 0.01). MDD also caused a significant reduction in the number of Dclk1-positive cells in the intestine (62%, P < 0.01), a long-lived crypt cell with cancer stem cell potential. Several undesirable effects associated with methyl donor restriction (e.g., reduced body weight gain) were shown to be transient and readily reversible following methyl donor repletion. Taken together, these results indicate that even temporary dietary methyl donor restriction in adenoma-prone mice can induce persistent changes to the intestinal epithelium and provide long-lasting tumor protection. These data also suggest that transient reductions in dietary methyl donor consumption should be considered when studying the impact of folate on colon cancer risk in humans. Cancer Prev Res; 9(10); 812-20. ©2016 AACR.


Assuntos
Adenoma/metabolismo , Dieta , Neoplasias Intestinais/metabolismo , Animais , Colina/metabolismo , Ácido Fólico/metabolismo , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Distribuição Aleatória , Vitamina B 12/metabolismo
7.
Curr Pharmacol Rep ; 1(3): 197-205, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26207201

RESUMO

For many years folic acid has been evaluated for its utility as a chemopreventive agent due to its position at the center of the one-carbon metabolic network. This network is responsible for generating precursors to nucleotide synthesis as well as the one-carbon moieties used in DNA methylation reactions, two mechanisms which are frequently disrupted during carcinogenesis. While the use of folic acid for the chemoprevention of colorectal cancer is still controversial, there is evidence that folic acid intake has significant influence on these fundamental cellular mechanisms. Folic acid has a dual role with regards to nucleotide synthesis and colorectal cancer (CRC) prevention; in a healthy colon, adequate folate status is important for nucleotide metabolism homeostasis and the maintenance of DNA integrity, however in a colon harboring premalignant lesions lowered folate status may help to eliminate transformed cells. In addition, folic acid is important for the generation of the one-carbon groups used in DNA methylation reactions, and modulation of folic acid metabolism may be useful in combating the aberrant DNA methylation during carcinogenesis. Interestingly, it has been revealed that decreased folic acid intake can dampen the inflammatory response, which has recently been a popular strategy for colorectal cancer chemoprevention. In this review we discuss the molecular mechanisms influenced by folic acid intake and how they might be relevant to cancer chemoprevention in greater detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA