Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(23): e2220678120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252966

RESUMO

Global change has converted many structurally complex and ecologically and economically valuable coastlines to bare substrate. In the structural habitats that remain, climate-tolerant and opportunistic species are increasing in response to environmental extremes and variability. The shifting of dominant foundation species identity with climate change poses a unique conservation challenge because species vary in their responses to environmental stressors and to management. Here, we combine 35 y of watershed modeling and biogeochemical water quality data with species comprehensive aerial surveys to describe causes and consequences of turnover in seagrass foundation species across 26,000 ha of habitat in the Chesapeake Bay. Repeated marine heatwaves have caused 54% retraction of the formerly dominant eelgrass (Zostera marina) since 1991, allowing 171% expansion of the temperature-tolerant widgeongrass (Ruppia maritima) that has likewise benefited from large-scale nutrient reductions. However, this phase shift in dominant seagrass identity now presents two significant shifts for management: Widgeongrass meadows are not only responsible for rapid, extensive recoveries but also for the largest crashes over the last four decades; and, while adapted to high temperatures, are much more susceptible than eelgrass to nutrient pulses driven by springtime runoff. Thus, by selecting for rapid post-disturbance recolonization but low resistance to punctuated freshwater flow disturbance, climate change could threaten the Chesapeake Bay seagrass' ability to provide consistent fishery habitat and sustain functioning over time. We demonstrate that understanding the dynamics of the next generation of foundation species is a critical management priority, because shifts from relatively stable habitat to high interannual variability can have far-reaching consequences across marine and terrestrial ecosystems.


Assuntos
Alismatales , Zosteraceae , Alismatales/fisiologia , Ecossistema , Mudança Climática , Baías
2.
Environ Pollut ; 330: 121678, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119998

RESUMO

Mercury (Hg) is a widespread element and persistent pollutant, harmful to fish, wildlife, and humans in its organic, methylated form. The risk of Hg contamination is driven by factors that regulate Hg loading, methylation, bioaccumulation, and biomagnification. In remote locations, with infrequent access and limited data, understanding the relative importance of these factors can pose a challenge. Here, we assessed Hg concentrations in an apex predator fish species, lake trout (Salvelinus namaycush), collected from 14 lakes spanning two National Parks in southwest Alaska, U.S.A. We then examined factors associated with the variation in fish Hg concentrations using a Bayesian hierarchical model. We found that total Hg concentrations in water were consistently low among lakes (0.11-0.50 ng L-1). Conversely, total Hg concentrations in lake trout spanned a thirty-fold range (101-3046 ng g-1 dry weight), with median values at 7 lakes exceeding Alaska's human consumption threshold. Model results showed that fish age and, to a lesser extent, body condition best explained variation in Hg concentration among fish within a lake, with Hg elevated in older, thinner lake trout. Other factors, including plankton methyl Hg content, fish species richness, volcano proximity, and glacier loss, best explained variation in lake trout Hg concentration among lakes. Collectively, these results provide evidence that multiple, hierarchically nested factors control fish Hg levels in these lakes.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Humanos , Idoso , Mercúrio/análise , Teorema de Bayes , Alaska , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Truta , Cadeia Alimentar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA