Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 79(1): 68-83.e7, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32533918

RESUMO

BAX is a pro-apoptotic protein that transforms from a cytosolic monomer into a toxic oligomer that permeabilizes the mitochondrial outer membrane. How BAX monomers assemble into a higher-order conformation, and the structural determinants essential to membrane permeabilization, remain a mechanistic mystery. A key hurdle has been the inability to generate a homogeneous BAX oligomer (BAXO) for analysis. Here, we report the production and characterization of a full-length BAXO that recapitulates physiologic BAX activation. Multidisciplinary studies revealed striking conformational consequences of oligomerization and insight into the macromolecular structure of oligomeric BAX. Importantly, BAXO enabled the assignment of specific roles to particular residues and α helices that mediate individual steps of the BAX activation pathway, including unexpected functionalities of BAX α6 and α9 in driving membrane disruption. Our results provide the first glimpse of a full-length and functional BAXO, revealing structural requirements for the elusive execution phase of mitochondrial apoptosis.


Assuntos
Apoptose , Mitocôndrias/patologia , Membranas Mitocondriais/metabolismo , Multimerização Proteica , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/metabolismo , Animais , Transporte Biológico , Permeabilidade da Membrana Celular , Citosol/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Modelos Moleculares , Conformação Proteica , Proteínas Proto-Oncogênicas c-fos
2.
Trends Immunol ; 44(4): 287-304, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36894436

RESUMO

The initial development of cytomegalovirus (CMV) as a vaccine vector for HIV/simian immunodeficiency virus (SIV) was predicated on its potential to pre-position high-frequency, effector-differentiated, CD8+ T cells in tissues for immediate immune interception of nascent primary infection. This goal was achieved and also led to the unexpected discoveries that non-human primate (NHP) CMVs can be programmed to differentially elicit CD8+ T cell responses that recognize viral peptides via classical MHC-Ia, and/or MHC-II, and/or MHC-E, and that MHC-E-restricted CD8+ T cell responses can uniquely mediate stringent arrest and subsequent clearance of highly pathogenic SIV, an unprecedented type of vaccine-mediated protection. These discoveries delineate CMV vector-elicited MHC-E-restricted CD8+ T cells as a functionally distinct T cell response with the potential for superior efficacy against HIV-1, and possibly other infectious agents or cancers.


Assuntos
Vacinas contra a AIDS , Infecções por Citomegalovirus , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD8-Positivos , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Citomegalovirus
3.
J Cell Sci ; 136(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37534432

RESUMO

The lipid molecule phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] controls all aspects of plasma membrane (PM) function in animal cells, from its selective permeability to the attachment of the cytoskeleton. Although disruption of PI(4,5)P2 is associated with a wide range of diseases, it remains unclear how cells sense and maintain PI(4,5)P2 levels to support various cell functions. Here, we show that the PIP4K family of enzymes, which synthesize PI(4,5)P2 via a minor pathway, also function as sensors of tonic PI(4,5)P2 levels. PIP4Ks are recruited to the PM by elevated PI(4,5)P2 levels, where they inhibit the major PI(4,5)P2-synthesizing PIP5Ks. Perturbation of this simple homeostatic mechanism reveals differential sensitivity of PI(4,5)P2-dependent signaling to elevated PI(4,5)P2 levels. These findings reveal that a subset of PI(4,5)P2-driven functions might drive disease associated with disrupted PI(4,5)P2 homeostasis.


Assuntos
Fosfatidilinositol 4,5-Difosfato , Transdução de Sinais , Animais , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transdução de Sinais/fisiologia , Membrana Celular/metabolismo , Fosfatidilinositóis/metabolismo , Homeostase
4.
PLoS Pathog ; 19(5): e1011323, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37134108

RESUMO

The severity of disease following infection with SARS-CoV-2 is determined by viral replication kinetics and host immunity, with early T cell responses and/or suppression of viraemia driving a favourable outcome. Recent studies uncovered a role for cholesterol metabolism in the SARS-CoV-2 life cycle and in T cell function. Here we show that blockade of the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) with Avasimibe inhibits SARS-CoV-2 pseudoparticle infection and disrupts the association of ACE2 and GM1 lipid rafts on the cell membrane, perturbing viral attachment. Imaging SARS-CoV-2 RNAs at the single cell level using a viral replicon model identifies the capacity of Avasimibe to limit the establishment of replication complexes required for RNA replication. Genetic studies to transiently silence or overexpress ACAT isoforms confirmed a role for ACAT in SARS-CoV-2 infection. Furthermore, Avasimibe boosts the expansion of functional SARS-CoV-2-specific T cells from the blood of patients sampled during the acute phase of infection. Thus, re-purposing of ACAT inhibitors provides a compelling therapeutic strategy for the treatment of COVID-19 to achieve both antiviral and immunomodulatory effects. Trial registration: NCT04318314.


Assuntos
Antivirais , COVID-19 , Humanos , Aciltransferases/antagonistas & inibidores , Antivirais/farmacologia , SARS-CoV-2 , Linfócitos T
5.
PLoS Pathog ; 19(10): e1011646, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796819

RESUMO

Congenital cytomegalovirus (cCMV) is the leading infectious cause of neurologic defects in newborns with particularly severe sequelae in the setting of primary CMV infection in the first trimester of pregnancy. The majority of cCMV cases worldwide occur after non-primary infection in CMV-seropositive women; yet the extent to which pre-existing natural CMV-specific immunity protects against CMV reinfection or reactivation during pregnancy remains ill-defined. We previously reported on a novel nonhuman primate model of cCMV in rhesus macaques where 100% placental transmission and 83% fetal loss were seen in CD4+ T lymphocyte-depleted rhesus CMV (RhCMV)-seronegative dams after primary RhCMV infection. To investigate the protective effect of preconception maternal immunity, we performed reinfection studies in CD4+ T lymphocyte-depleted RhCMV-seropositive dams inoculated in late first / early second trimester gestation with RhCMV strains 180.92 (n = 2), or RhCMV UCD52 and FL-RhCMVΔRh13.1/SIVgag, a wild-type-like RhCMV clone with SIVgag inserted as an immunological marker, administered separately (n = 3). An early transient increase in circulating monocytes followed by boosting of the pre-existing RhCMV-specific CD8+ T lymphocyte and antibody response was observed in the reinfected dams but not in control CD4+ T lymphocyte-depleted dams. Emergence of SIV Gag-specific CD8+ T lymphocyte responses in macaques inoculated with the FL-RhCMVΔRh13.1/SIVgag virus confirmed reinfection. Placental transmission was detected in only one of five reinfected dams and there were no adverse fetal sequelae. Viral whole genome, short-read, deep sequencing analysis confirmed transmission of both reinfection RhCMV strains across the placenta with ~30% corresponding to FL-RhCMVΔRh13.1/SIVgag and ~70% to RhCMV UCD52, consistent with the mixed human CMV infections reported in infants with cCMV. Our data showing reduced placental transmission and absence of fetal loss after non-primary as opposed to primary infection in CD4+ T lymphocyte-depleted dams indicates that preconception maternal CMV-specific CD8+ T lymphocyte and/or humoral immunity can protect against cCMV infection.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Recém-Nascido , Animais , Feminino , Gravidez , Humanos , Citomegalovirus/genética , Macaca mulatta , Reinfecção , Placenta , Imunidade Inata
7.
J Biol Chem ; 299(8): 105022, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423304

RESUMO

Signal transduction downstream of growth factor and immune receptor activation relies on the production of phosphatidylinositol-(3,4,5)-trisphosphate (PI(3,4,5)P3) lipids by PI3K. Regulating the strength and duration of PI3K signaling in immune cells, Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) controls the dephosphorylation of PI(3,4,5)P3 to generate phosphatidylinositol-(3,4)-bisphosphate. Although SHIP1 has been shown to regulate neutrophil chemotaxis, B-cell signaling, and cortical oscillations in mast cells, the role that lipid and protein interactions serve in controlling SHIP1 membrane recruitment and activity remains unclear. Using single-molecule total internal reflection fluorescence microscopy, we directly visualized membrane recruitment and activation of SHIP1 on supported lipid bilayers and the cellular plasma membrane. We find that localization of the central catalytic domain of SHIP1 is insensitive to dynamic changes in PI(3,4,5)P3 and phosphatidylinositol-(3,4)-bisphosphate both in vitro and in vivo. Very transient SHIP1 membrane interactions were detected only when membranes contained a combination of phosphatidylserine and PI(3,4,5)P3 lipids. Molecular dissection reveals that SHIP1 is autoinhibited with the N-terminal Src homology 2 domain playing a critical role in suppressing phosphatase activity. Robust SHIP1 membrane localization and relief of autoinhibition can be achieved through interactions with immunoreceptor-derived phosphopeptides presented either in solution or conjugated to a membrane. Overall, this work provides new mechanistic details concerning the dynamic interplay between lipid-binding specificity, protein-protein interactions, and the activation of autoinhibited SHIP1.


Assuntos
Fosfatidilinositol 3-Quinases , Monoéster Fosfórico Hidrolases , Inositol Polifosfato 5-Fosfatases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Domínios de Homologia de src , Fosfatidilinositóis , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo
8.
J Biol Chem ; 299(6): 104763, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119851

RESUMO

Coronavirus disease 2019 (COVID-19) is a respiratory infection caused by severe acute respiratory syndrome coronavirus 2. The virus binds to angiotensinogen converting enzyme 2 (ACE2), which mediates viral entry into mammalian cells. COVID-19 is notably severe in the elderly and in those with underlying chronic conditions. The cause of selective severity is not well understood. Here we show cholesterol and the signaling lipid phosphatidyl-inositol 4,5 bisphosphate (PIP2) regulate viral infectivity through the localization of ACE2's into nanoscopic (<200 nm) lipid clusters. Uptake of cholesterol into cell membranes (a condition common to chronic disease) causes ACE2 to move from PIP2 lipids to endocytic ganglioside (GM1) lipids, where the virus is optimally located for viral entry. In mice, age and high-fat diet increase lung tissue cholesterol by up to 40%. And in smokers with chronic disease, cholesterol is elevated 2-fold, a magnitude of change that dramatically increases infectivity of virus in cell culture. We conclude increasing the ACE2 location near endocytic lipids increases viral infectivity and may help explain the selective severity of COVID-19 in aged and diseased populations.


Assuntos
COVID-19 , Hipercolesterolemia , Animais , Camundongos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2 , Peptidil Dipeptidase A/metabolismo , Colesterol/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Mamíferos/metabolismo
9.
PLoS Pathog ; 18(3): e1010396, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35358290

RESUMO

The CCR5-specific antibody Leronlimab is being investigated as a novel immunotherapy that can suppress HIV replication with minimal side effects. Here we studied the virological and immunological consequences of Leronlimab in chronically CCR5-tropic HIV-1 infected humans (n = 5) on suppressive antiretroviral therapy (ART) and in ART-naïve acutely CCR5-tropic SHIV infected rhesus macaques (n = 4). All five human participants transitioned from daily combination ART to self-administered weekly subcutaneous (SC) injections of 350 mg or 700 mg Leronlimab and to date all participants have sustained virologic suppression for over seven years. In all participants, Leronlimab fully occupied CCR5 receptors on peripheral blood CD4+ T cells and monocytes. In ART-naïve rhesus macaques acutely infected with CCR5-tropic SHIV, weekly SC injections of 50 mg/kg Leronlimab fully suppressed plasma viremia in half of the macaques. CCR5 receptor occupancy by Leronlimab occurred concomitant with rebound of CD4+ CCR5+ T-cells in peripheral blood, and full CCR5 receptor occupancy was found in multiple anatomical compartments. Our results demonstrate that weekly, self-administered Leronlimab was safe, well-tolerated, and efficacious for long-term virologic suppression and should be included in the arsenal of safe, easily administered, longer-acting antiretroviral treatments for people living with HIV-1. Trial Registration: ClinicalTrials.gov Identifiers: NCT02175680 and NCT02355184.


Assuntos
Vírus da Imunodeficiência Símia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Anti-HIV , Humanos , Macaca mulatta , Receptores CCR5
10.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34789575

RESUMO

Here, we present detailed kinetic analyses of a panel of soluble lipid kinases and phosphatases, as well as Ras activating proteins, acting on their respective membrane surface substrates. The results reveal that the mean catalytic rate of such interfacial enzymes can exhibit a strong dependence on the size of the reaction system-in this case membrane area. Experimental measurements and kinetic modeling reveal how stochastic effects stemming from low molecular copy numbers of the enzymes alter reaction kinetics based on mechanistic characteristics of the enzyme, such as positive feedback. For the competitive enzymatic cycles studied here, the final product-consisting of a specific lipid composition or Ras activity state-depends on the size of the reaction system. Furthermore, we demonstrate how these reaction size dependencies can be controlled by engineering feedback mechanisms into the enzymes.


Assuntos
Tamanho Celular , Enzimas/metabolismo , Membranas/fisiologia , Retroalimentação , Cinética , Bicamadas Lipídicas , Lipídeos , Modelos Biológicos , Monoéster Fosfórico Hidrolases , Transdução de Sinais
11.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385305

RESUMO

Alzheimer's disease (AD) is characterized by the presence of amyloid ß (Aß) plaques, tau tangles, inflammation, and loss of cognitive function. Genetic variation in a cholesterol transport protein, apolipoprotein E (apoE), is the most common genetic risk factor for sporadic AD. In vitro evidence suggests that apoE links to Aß production through nanoscale lipid compartments (lipid clusters), but its regulation in vivo is unclear. Here, we use superresolution imaging in the mouse brain to show that apoE utilizes astrocyte-derived cholesterol to specifically traffic neuronal amyloid precursor protein (APP) in and out of lipid clusters, where it interacts with ß- and γ-secretases to generate Aß-peptide. We find that the targeted deletion of astrocyte cholesterol synthesis robustly reduces amyloid and tau burden in a mouse model of AD. Treatment with cholesterol-free apoE or knockdown of cholesterol synthesis in astrocytes decreases cholesterol levels in cultured neurons and causes APP to traffic out of lipid clusters, where it interacts with α-secretase and gives rise to soluble APP-α (sAPP-α), a neuronal protective product of APP. Changes in cellular cholesterol have no effect on α-, ß-, and γ-secretase trafficking, suggesting that the ratio of Aß to sAPP-α is regulated by the trafficking of the substrate, not the enzymes. We conclude that cholesterol is kept low in neurons, which inhibits Aß accumulation and enables the astrocyte regulation of Aß accumulation by cholesterol signaling.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Colesterol/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Apolipoproteínas E , Encéfalo/citologia , Membrana Celular , Colesterol/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Isoformas de Proteínas , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
12.
Ann Plast Surg ; 92(5S Suppl 3): S320-S326, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689413

RESUMO

PURPOSE: Resection of sacral neoplasms such as chordoma and chondrosarcoma with subsequent reconstruction of large soft tissue defects is a complex multidisciplinary process. Radiotherapy and prior abdominal surgery play a role in reconstructive planning; however, there is no consensus on how to maximize outcomes. In this study, we present our institution's experience with the reconstructive surgical management of this unique patient population. METHODS: We conducted a retrospective review of patients who underwent reconstruction after resection of primary or recurrent pelvic chordoma or chondrosarcoma between 2002 and 2019. Surgical details, hospital stay, and postoperative outcomes were assessed. Patients were divided into 3 groups for comparison based on reconstruction technique: gluteal-based flaps, vertical rectus abdominus myocutaneous (VRAM) flaps, and locoregional fasciocutaneous flaps. RESULTS: Twenty-eight patients (17 males, 11 females), with mean age of 62 years (range, 34-86 years), were reviewed. Twenty-two patients (78.6%) received gluteal-based flaps, 3 patients (10.7%) received VRAM flaps, and 3 patients (10.7%) were reconstructed with locoregional fasciocutaneous flaps. Patients in the VRAM group were significantly more likely to have undergone total sacrectomy (P < 0.01) in a 2-stage operation (P < 0.01) compared with patients in the other 2 groups. Patients in the VRAM group also had a significantly greater average number of reoperations (2 ± 3.5, P = 0.04) and length of stay (29.7 ± 20.4 days, P = 0.01) compared with the 2 other groups. The overall minor and major wound complication rates were 17.9% and 42.9%, respectively, with 17.9% of patients experiencing at least 1 infection or seroma. There was no association between prior abdominal surgery, surgical stages, or radiation therapy and an increased risk of wound complications. CONCLUSIONS: Vertical rectus abdominus myocutaneous flaps are a more suitable option for patients with larger defects after total sacrectomy via 2-staged anteroposterior resections, whereas gluteal myocutaneous flaps are effective options for posterior-only resections. For patients with small- to moderate-sized defects, local fasciocutaneous flaps are a less invasive and effective option. Paraspinous flaps may be used in combination with other techniques to provide additional bulk and coverage for especially long postresection wounds. Furthermore, mesh is a useful adjunct for any reconstruction aimed at protecting against intra-abdominal complications.


Assuntos
Cordoma , Procedimentos de Cirurgia Plástica , Sacro , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Procedimentos de Cirurgia Plástica/métodos , Idoso , Adulto , Idoso de 80 Anos ou mais , Cordoma/cirurgia , Sacro/cirurgia , Condrossarcoma/cirurgia , Retalhos Cirúrgicos , São Francisco , Neoplasias da Coluna Vertebral/cirurgia
13.
Ann Plast Surg ; 92(5): 564-568, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563574

RESUMO

PURPOSE: The benefits of paraspinous flaps in adult complex spine surgery patients are established in the literature; however, their use in pediatric patients has not been well described. This study compares clinical outcomes with and without paraspinous muscle flap closure in pediatric patients who have undergone spine surgery. METHODS: We conducted a retrospective review of all pediatric spine surgeries at the University of California, San Francisco from 2011 to 2022. Patients were divided into 2 cohorts based on whether the plastic surgery service closed or did not close the wound with paraspinous muscle flaps. We matched patients by age, American Society of Anesthesiology classification, prior spinal surgical history, and diagnosis. Surgical outcomes were compared between the 2 cohorts. RESULTS: We identified 226 pediatric patients who underwent at least one spinal surgery, 14 of whom received paraspinous flap closure by plastic surgery. They were matched in a 1:4 ratio with controls (n = 56) that did not have plastic surgery closure. The most common indication for plastic surgery involvement was perceived complexity of disease by the spine surgeon with concern for inadequate healthy tissue coverage (78.6%), followed by infection (21.4%). Postoperative complications were similar between the two groups. The plastic surgery cohort had a higher rate of patients who were underweight (57.1% vs 14.3%, P < 0.01) and had positive preoperative wound cultures (28.6% vs 8.9%, P = 0.05), as well as a higher rate of postoperative antibiotic usage (78.6 vs 17.9%, P < 0.01). There was no difference in recorded postoperative outcomes. CONCLUSIONS: Spine surgeons requested paraspinous flap closure for patients with more complex disease, preoperative infections, history of chemotherapy, or if they were underweight. Patients with paraspinous flap coverage did not have increased postoperative complications despite their elevated risk profile. Our findings suggest that paraspinous muscle flaps should be considered in high-risk pediatric patients who undergo spine surgery.


Assuntos
Músculos Paraespinais , Procedimentos de Cirurgia Plástica , Retalhos Cirúrgicos , Humanos , Estudos Retrospectivos , Feminino , Masculino , Criança , Adolescente , Procedimentos de Cirurgia Plástica/métodos , Retalhos Cirúrgicos/transplante , Pré-Escolar , Complicações Pós-Operatórias/epidemiologia , Resultado do Tratamento , Doenças da Coluna Vertebral/cirurgia
14.
Ann Plast Surg ; 92(5S Suppl 3): S331-S335, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689414

RESUMO

BACKGROUND: Incisional negative pressure wound therapy (iNPWT) is an adjunctive treatment that uses constant negative pressure suction to facilitate healing. The utility of this treatment modality on vascular operations for critical limb-threatening ischemia (CLTI) has yet to be elucidated. This study compares the incidence of postoperative wound complications between the Prevena Incision Management System, a type of iNPWT, and standard wound dressings for vascular patients who also underwent plastic surgery closure of groin incisions for CLTI. METHOD: We performed a retrospective cohort study of 40 patients with CLTI who underwent 53 open vascular surgeries with subsequent sartorius muscle flap closure. Patient demographics, intraoperative details, and wound complications were measured from 2015 to 2018 at the University of California San Francisco. Two cohorts were generated based on the modality of postoperative wound management and compared on wound healing outcomes. RESULTS: Of the 53 groin incisions, 29 were managed with standard dressings, and 24 received iNPWT. Patient demographics, comorbidities, and operative characteristics were similar between the 2 groups. Patients who received iNPWT had a significantly lower rate of infection (8.33% vs 31.0%, P = 0.04) and dehiscence (0% vs 41.3%, P < 0.01). Furthermore, the iNPWT group had a significantly lower rate of reoperation (0% vs 17.2%, P = 0.03) for wound complications within 30 days compared with the control group and a moderately reduced rate of readmission (4.17% vs 20.7%, P = 0.08). CONCLUSIONS: Rates of infection, reoperation, and dehiscence were significantly reduced in patients whose groin incisions were managed with iNPWT compared with standard wound care. Readmission rates were also decreased, but this difference was not statistically significant. Our results suggest that implementing iNPWT for the management of groin incisions, particularly in patients undergoing vascular operations for CLTI, may significantly improve clinical outcomes.


Assuntos
Virilha , Isquemia , Tratamento de Ferimentos com Pressão Negativa , Cicatrização , Humanos , Tratamento de Ferimentos com Pressão Negativa/métodos , Masculino , Estudos Retrospectivos , Feminino , Virilha/cirurgia , Isquemia/cirurgia , Isquemia/etiologia , Idoso , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Vasculares/métodos , Estudos de Coortes , Complicações Pós-Operatórias/epidemiologia
15.
Trends Biochem Sci ; 44(9): 795-806, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31060927

RESUMO

Anionic phospholipids are minor but prominent components of the plasma membrane that are necessary for ion channel function. Their persistence in bulk membranes, in particular phosphatidylinositol 4,5-bisphosphate (PIP2), initially suggested they act as channel cofactors. However, recent technologies have established an emerging system of nanoscale signaling to ion channels based on lipid compartmentalization (clustering), direct lipid binding, and local lipid dynamics that allow cells to harness lipid heterogeneity to gate ion channels. The new tools to study lipid binding are set to transform our view of the membrane and answer important questions surrounding ion channel-delimited processes such as mechanosensation.


Assuntos
Canais Iônicos/metabolismo , Nanotecnologia , Fosfolipídeos/metabolismo , Humanos
16.
Bioinformatics ; 38(10): 2791-2801, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561167

RESUMO

MOTIVATION: Single-cell sequencing methods provide previously impossible resolution into the transcriptome of individual cells. Cell hashing reduces single-cell sequencing costs by increasing capacity on droplet-based platforms. Cell hashing methods rely on demultiplexing algorithms to accurately classify droplets; however, assumptions underlying these algorithms limit accuracy of demultiplexing, ultimately impacting the quality of single-cell sequencing analyses. RESULTS: We present Bimodal Flexible Fitting (BFF) demultiplexing algorithms BFFcluster and BFFraw, a novel class of algorithms that rely on the single inviolable assumption that barcode count distributions are bimodal. We integrated these and other algorithms into cellhashR, a new R package that provides integrated QC and a single command to execute and compare multiple demultiplexing algorithms. We demonstrate that BFFcluster demultiplexing is both tunable and insensitive to issues with poorly behaved data that can confound other algorithms. Using two well-characterized reference datasets, we demonstrate that demultiplexing with BFF algorithms is accurate and consistent for both well-behaved and poorly behaved input data. AVAILABILITY AND IMPLEMENTATION: cellhashR is available as an R package at https://github.com/BimberLab/cellhashR. cellhashR version 1.0.3 was used for the analyses in this manuscript and is archived on Zenodo at https://www.doi.org/10.5281/zenodo.6402477. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Processamento Eletrônico de Dados , Análise de Sequência , Análise de Célula Única
17.
PLoS Pathog ; 17(5): e1009565, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33970966

RESUMO

Here, we assessed the efficacy of a short-course multimodal therapy (enrofloxacin, azithromycin, fenbendazole, and paromomycin) to eliminate common macaque endemic pathogens (EPs) and evaluated its impact on gastrointestinal (GI) microbiota, mucosal integrity, and local and systemic inflammation in sixteen clinically healthy macaques. Treatment combined with expanded practices resulted in successful maintenance of rhesus macaques (RM) free of common EPs, with no evidence of overt microbiota diversity loss or dysbiosis and instead resulted in a more defined luminal microbiota across study subjects. Creation of a GI pathogen free (GPF) status resulted in improved colonic mucosal barrier function (histologically, reduced colonic MPO+, and reduced pan-bacterial 16s rRNA in the MLN), reduced local and systemic innate and adaptive inflammation with reduction of colonic Mx1 and pSTAT1, decreased intermediate (CD14+CD16+) and non-classical monocytes (CD14-CD16+), reduced populations of peripheral dendritic cells, Ki-67+ and CD38+ CD4+ T cells, Ki-67+IgG+, and Ki-67+IgD+ B cells indicating lower levels of background inflammation in the distal descending colon, draining mesenteric lymph nodes, and systemically in peripheral blood, spleen, and axillary lymph nodes. A more controlled rate of viral acquisition resulted when untreated and treated macaques were challenged by low dose intrarectal SIVmac239x, with an ~100 fold increase in dose required to infect 50% (AID50) of the animals receiving treatment compared to untreated controls. Reduction in and increased consistency of number of transmitted founder variants resulting from challenge seen in the proof of concept study directly correlated with post-treatment GPF animal's improved barrier function and reduction of key target cell populations (Ki-67+ CD4+T cells) at the site of viral acquisition in the follow up study. These data demonstrate that a therapeutic and operational strategy can successfully eliminate varying background levels of EPs and their associated aberrant immunomodulatory effects within a captive macaque cohort, leading to a more consistent, better defined and reproducible research model.


Assuntos
Inflamação/terapia , Microbiota/efeitos dos fármacos , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Vírus da Imunodeficiência Símia/imunologia , Imunidade Adaptativa , Animais , Linfócitos B , Linfócitos T CD4-Positivos , Proliferação de Células , Terapia Combinada , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Humanos , Imunidade Inata , Mucosa Intestinal , Linfonodos , Macaca mulatta , Masculino , Monócitos , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia
18.
PLoS Pathog ; 17(7): e1009278, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228762

RESUMO

Simian immunodeficiency virus (SIV) challenge of rhesus macaques (RMs) vaccinated with strain 68-1 Rhesus Cytomegalovirus (RhCMV) vectors expressing SIV proteins (RhCMV/SIV) results in a binary outcome: stringent control and subsequent clearance of highly pathogenic SIV in ~55% of vaccinated RMs with no protection in the remaining 45%. Although previous work indicates that unconventionally restricted, SIV-specific, effector-memory (EM)-biased CD8+ T cell responses are necessary for efficacy, the magnitude of these responses does not predict efficacy, and the basis of protection vs. non-protection in 68-1 RhCMV/SIV vector-vaccinated RMs has not been elucidated. Here, we report that 68-1 RhCMV/SIV vector administration strikingly alters the whole blood transcriptome of vaccinated RMs, with the sustained induction of specific immune-related pathways, including immune cell, toll-like receptor (TLR), inflammasome/cell death, and interleukin-15 (IL-15) signaling, significantly correlating with subsequent vaccine efficacy. Treatment of a separate RM cohort with IL-15 confirmed the central involvement of this cytokine in the protection signature, linking the major innate and adaptive immune gene expression networks that correlate with RhCMV/SIV vaccine efficacy. This change-from-baseline IL-15 response signature was also demonstrated to significantly correlate with vaccine efficacy in an independent validation cohort of vaccinated and challenged RMs. The differential IL-15 gene set response to vaccination strongly correlated with the pre-vaccination activity of this pathway, with reduced baseline expression of IL-15 response genes significantly correlating with higher vaccine-induced induction of IL-15 signaling and subsequent vaccine protection, suggesting that a robust de novo vaccine-induced IL-15 signaling response is needed to program vaccine efficacy. Thus, the RhCMV/SIV vaccine imparts a coordinated and persistent induction of innate and adaptive immune pathways featuring IL-15, a known regulator of CD8+ T cell function, that support the ability of vaccine-elicited unconventionally restricted CD8+ T cells to mediate protection against SIV challenge.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-15/imunologia , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Citomegalovirus , Feminino , Vetores Genéticos , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle
19.
J Immunol ; 207(12): 2913-2921, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34810222

RESUMO

CD8+ T cells are key mediators of antiviral and antitumor immunity. The isolation and study of Ag-specific CD8+ T cells, as well as mapping of their MHC restriction, has practical importance to the study of disease and the development of therapeutics. Unfortunately, most experimental approaches are cumbersome, owing to the highly variable and donor-specific nature of MHC-bound peptide/TCR interactions. Here we present a novel system for rapid identification and characterization of Ag-specific CD8+ T cells, particularly well suited for samples with limited primary cells. Cells are stimulated ex vivo with Ag of interest, followed by live cell sorting based on surface-trapped TNF-α. We take advantage of major advances in single-cell sequencing to generate full-length sequence data from the paired TCR α- and ß-chains from these Ag-specific cells. The paired TCR chains are cloned into retroviral vectors and used to transduce donor CD8+ T cells. These TCR transductants provide a virtually unlimited experimental reagent, which can be used for further characterization, such as minimal epitope mapping or identification of MHC restriction, without depleting primary cells. We validated this system using CMV-specific CD8+ T cells from rhesus macaques, characterizing an immunodominant Mamu-A1*002:01-restricted epitope. We further demonstrated the utility of this system by mapping a novel HLA-A*68:02-restricted HIV Gag epitope from an HIV-infected donor. Collectively, these data validate a new strategy to rapidly identify novel Ags and characterize Ag-specific CD8+ T cells, with applications ranging from the study of infectious disease to immunotherapeutics and precision medicine.


Assuntos
Linfócitos T CD8-Positivos , Infecções por HIV , Animais , Epitopos , Epitopos de Linfócito T , Macaca mulatta , Receptores de Antígenos de Linfócitos T , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA