Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37429578

RESUMO

Computational protein design has been demonstrated to be the most powerful tool in the last few years among protein designing and repacking tasks. In practice, these two tasks are strongly related but often treated separately. Besides, state-of-the-art deep-learning-based methods cannot provide interpretability from an energy perspective, affecting the accuracy of the design. Here we propose a new systematic approach, including both a posterior probability and a joint probability parts, to solve the two essential questions once for all. This approach takes the physicochemical property of amino acids into consideration and uses the joint probability model to ensure the convergence between structure and amino acid type. Our results demonstrated that this method could generate feasible, high-confidence sequences with low-energy side conformations. The designed sequences can fold into target structures with high confidence and maintain relatively stable biochemical properties. The side chain conformation has a significantly lower energy landscape without delegating to a rotamer library or performing the expensive conformational searches. Overall, we propose an end-to-end method that combines the advantages of both deep learning and energy-based methods. The design results of this model demonstrate high efficiency, and precision, as well as a low energy state and good interpretability.


Assuntos
Aprendizado Profundo , Modelos Moleculares , Proteínas/química , Sequência de Aminoácidos , Aminoácidos/química , Conformação Proteica
2.
Hepatology ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37972953

RESUMO

BACKGROUND AND AIMS: Microvascular invasion (MVI) is a crucial pathological hallmark of HCC that is closely associated with poor outcomes, early recurrence, and intrahepatic metastasis following surgical resection and transplantation. However, the intricate tumor microenvironment and transcriptional programs underlying MVI in HCC remain poorly understood. APPROACH AND RESULTS: We performed single-cell RNA sequencing of 46,789 individual cells from 10 samples of MVI+ (MVI present) and MVI- (MVI absent) patients with HCC. We conducted comprehensive and comparative analyses to characterize cellular and molecular features associated with MVI and validated key findings using external bulk, single-cell, and spatial transcriptomic datasets coupled with multiplex immunofluorescence assays. The comparison identified specific subtypes of immune and stromal cells critical to the formation of the immunosuppressive and pro-metastatic microenvironment in MVI+ tumors, including cycling T cells, lysosomal associated membrane protein 3+ dendritic cells, triggering receptor expressed on myeloid cells 2+ macrophages, myofibroblasts, and arterial i endothelial cells. MVI+ malignant cells are characterized by high proliferation rates, whereas MVI- malignant cells exhibit an inflammatory milieu. Additionally, we identified the midkine-dominated interaction between triggering receptor expressed on myeloid cells 2+ macrophages and malignant cells as a contributor to MVI formation and tumor progression. Notably, we unveiled a spatially co-located multicellular community exerting a dominant role in shaping the immunosuppressive microenvironment of MVI and correlating with unfavorable prognosis. CONCLUSIONS: This study provides a comprehensive single-cell atlas of MVI in HCC, shedding light on the complex multicellular ecosystem and molecular features associated with MVI. These findings deepen our understanding of the underlying mechanisms driving MVI and provide valuable insights for improving clinical diagnosis and developing more effective treatment strategies.

3.
Arch Microbiol ; 204(5): 280, 2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35462604

RESUMO

Black-odorous urban water bodies and sediments pose a serious environmental problem. In this study, we conducted microcosm batch experiments to investigate the effect of remediation reagents (magnesium hydroxide and calcium nitrate) on native bacterial communities and their ecological functions in the black-odorous sediment of urban water. The dominant phyla (Proteobacteria, Actinobacteria, Chloroflexi, and Planctomycetes) and classes (Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria, Actinobacteria, Anaerolineae, and Planctomycetia) were determined under calcium nitrate and magnesium hydroxide treatments. Functional groups related to aerobic metabolism, including aerobic chemoheterotrophy, dark sulfide oxidation, and correlated dominant genera (Thiobacillus, Lysobacter, Gp16, and Gaiella) became more abundant under calcium nitrate treatment, whereas functional genes potentially involved in dissimilatory sulfate reduction became less abundant. The relative abundance of chloroplasts, fermentation, and correlated genera (Desulfomonile and unclassified Cyanobacteria) decreased under magnesium hydroxide treatment. Overall, these results indicated that calcium nitrate addition improved hypoxia-related reducing conditions in the sediment and promoted aerobic chemoheterotrophy.


Assuntos
Hidróxido de Magnésio , Água , Bactérias/genética , Sedimentos Geológicos/microbiologia , Indicadores e Reagentes
4.
BMC Med Educ ; 22(1): 92, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35144614

RESUMO

BACKGROUND: Virtual reality (VR) surgery training has become a trend in clinical education. Many research papers validate the effectiveness of VR-based surgical simulators in training medical students. However, most existing articles employ subjective methods to study the residents' surgical skills improvement. Few of them investigate how to improve the surgery skills on specific dimensions substantially. METHODS: Our paper resorts to physiological approaches to objectively study the quantitative influence and performance analysis of VR laparoscopic surgical training system for medical students. Fifty-one participants were recruited from a pool of medical students. They conducted four pre and post experiments in the training box. They were trained on VR-based laparoscopic surgery simulators (VRLS) in the middle of pre and post experiments. Their operation and physiological data (heart rate and electroencephalogram) are recorded during the pre and post experiments. The physiological data is used to compute cognitive load and flow experience quantitatively. Senior surgeons graded their performance using newly designed hybrid standards for fundamental tasks and Global operative assessment of laparoscopic skills (GOALS) standards for colon resection tasks. Finally, the participants were required to fill the questionnaires about their cognitive load and flow experience. RESULTS: After training on VRLS, the time of the experimental group to complete the same task could drop sharply (p < 0.01). The performance scores are enhanced significantly (p < 0.01). The performance and cognitive load computed from EEG are negatively correlated (p < 0.05). CONCLUSION: The results show that the VRLS could highly improve medical students' performance and enable the participants to obtain flow experience with a lower cognitive load. Participants' performance is negatively correlated with cognitive load through quantitative physiological analysis. This might provide a new way of assessing skill acquirement.


Assuntos
Laparoscopia , Treinamento por Simulação , Realidade Virtual , Competência Clínica , Simulação por Computador , Humanos , Interface Usuário-Computador
5.
BMC Oral Health ; 20(1): 141, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404094

RESUMO

BACKGROUND: Dental plaque causes many common oral diseases (e.g., caries, gingivitis, and periodontitis). Therefore, plaque detection and control are extremely important for children's oral health. The objectives of this study were to design a deep learning-based artificial intelligence (AI) model to detect plaque on primary teeth and to evaluate the diagnostic accuracy of the model. METHODS: A conventional neural network (CNN) framework was adopted, and 886 intraoral photos of primary teeth were used for training. To validate clinical feasibility, 98 intraoral photos of primary teeth were assessed by the AI model. Additionally, tooth photos were acquired using a digital camera. One experienced pediatric dentist examined the photos and marked the regions containing plaque. Then, a plaque-disclosing agent was applied, and the areas with plaque were identified. After 1 week, the dentist drew the plaque area on the 98 photos taken by the digital camera again to evaluate the consistency of manual diagnosis. Additionally, 102 intraoral photos of primary teeth were marked to denote the plaque areas obtained by the AI model and the dentist to evaluate the diagnostic capacity of each approach based on lower-resolution photos. The mean intersection-over-union (MIoU) metric was employed to indicate detection accuracy. RESULTS: The MIoU for detecting plaque on the tested tooth photos was 0.726 ± 0.165. The dentist's MIoU was 0.695 ± 0.269 when first diagnosing the 98 photos taken by the digital camera and 0.689 ± 0.253 after 1 week. Compared to the dentist, the AI model demonstrated a higher MIoU (0.736 ± 0.174), and the results did not change after 1 week. When the dentist and the AI model assessed the 102 intraoral photos, the MIoU was 0.652 ± 0.195 for the dentist and 0.724 ± 0.159 for the model. The results of a paired t-test found no significant difference between the AI model and human specialist (P > .05) in diagnosing dental plaque on primary teeth. CONCLUSIONS: The AI model showed clinically acceptable performance in detecting dental plaque on primary teeth compared with an experienced pediatric dentist. This finding illustrates the potential of such AI technology to help improve pediatric oral health.


Assuntos
Aprendizado Profundo , Cárie Dentária , Placa Dentária , Gengivite , Criança , Cárie Dentária/diagnóstico , Placa Dentária/diagnóstico , Gengivite/diagnóstico , Humanos , Dente Decíduo
6.
J BUON ; 21(2): 473-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27273960

RESUMO

Purpose: The quality of medical services provided by competing public hospitals is the primary consideration of the public in determining the selection of a specific hospital for treatment. The main objective of strategic planning is to improve the quality of public hospital medical services. This paper provides an introduction to the history, significance, principles and practices of public hospital medical service strategy, as well as advancing the opinion that public hospital service strategy must not merely aim to produce but actually result in the highest possible level of quality, convenience, efficiency and patient satisfaction.


Assuntos
Atenção à Saúde/organização & administração , Alocação de Recursos para a Atenção à Saúde/organização & administração , Hospitais Públicos/organização & administração , China , Reforma dos Serviços de Saúde/organização & administração , Necessidades e Demandas de Serviços de Saúde/organização & administração , Humanos , Modelos Organizacionais , Avaliação das Necessidades/organização & administração , Formulação de Políticas , Melhoria de Qualidade/organização & administração , Indicadores de Qualidade em Assistência à Saúde/organização & administração
7.
Virol J ; 12: 197, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26596706

RESUMO

BACKGROUND: Recently, a diverse group of viruses with circular, replication initiator protein(Rep) encoding, single stranded DNA (CRESS-DNA) genomes, were discovered from wide range of eukaryotic organisms ranging from mammals to fungi. Gemycircularvirus belongs to a distinct group of CRESS-DNA genomes and is classified under the genus name of Gemycircularvirus. FINDINGS: Here, a novel gemycircularvirus named GeTz1 from cerebrospinal fluid sample of a child with unexplainable encephalitis was characterized. The novel gemycircularvirus encodes two major proteins, including a capsid protein (Cap) and a replication-associated protein (Rep). Phylogenetic analysis based on the amino acid sequence of Rep indicated that GeTz1 clusters with one gemycircularvirus discovered from bird (KF371633), sharing 46.6 % amino acid sequence identity with each other. CONCLUSION: A novel gemycircularvirus was discovered from cerebrospinal fluid sample of a child with unexplainable encephalitis. Further studies, such as testing human sera for specific antibodies, should be performed to investigate whether gemycircularvirus infects human and is associated with encephalitis.


Assuntos
Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/virologia , Vírus de DNA/isolamento & purificação , Encefalite Viral/diagnóstico , Encefalite Viral/virologia , Proteínas do Capsídeo/genética , Líquido Cefalorraquidiano/virologia , Pré-Escolar , Análise por Conglomerados , DNA Helicases/genética , Infecções por Vírus de DNA/patologia , Vírus de DNA/genética , DNA Viral/química , DNA Viral/genética , Encefalite Viral/patologia , Humanos , Lactente , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Transativadores/genética , Proteínas Virais/genética
8.
Bull Environ Contam Toxicol ; 95(2): 194-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26070371

RESUMO

Three kinds of representative sediments were obtained from a macrophyte-dominated bay (East Lake Taihu) and two algae-dominated regions (Western Lake Taihu and Meiliang Bay). Physiological responses of Vallisneria asiatica to these sediments were compared. Results from 20 days exposures showed no obvious differences in malondialdehyde (MDA) in roots, while the MDA content in leaves of plants exposed to Western Lake Taihu sediment was significantly (p<0.05) higher than those exposed to the other two sediments. In comparison to the other two sediments, plants exposed to Western Lake Taihu sediment showed significantly lower (p<0.05) superoxide dismutase in roots and leaves on the 10th and 40th day. On the 40th day, root catalase (CAT) activities in V. asiatica from Western Lake Taihu and Meiliang Bay sediments were lower than that from East Lake Taihu sediment, while leaf CAT activity in V. asiatica from Western Lake Taihu sediment was higher than that from East Lake Taihu sediment (p<0.05). Western Lake Taihu sediment caused more serious oxidative stress in V. asiatica than East Lake Taihu sediment. Results indicated eutrophic sediment was a contributing factor in the disappearance of V. asiatica in Western Lake Taihu.


Assuntos
Catalase/metabolismo , Sedimentos Geológicos/química , Hydrocharitaceae/efeitos dos fármacos , Lagos , Poluentes do Solo/toxicidade , Superóxido Dismutase/metabolismo , China , Monitoramento Ambiental , Hydrocharitaceae/enzimologia , Malondialdeído/análise , Estresse Oxidativo/efeitos dos fármacos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38861445

RESUMO

It is a challenging task to create realistic 3D avatars that accurately replicate individuals' speech and unique talking styles for speech-driven facial animation. Existing techniques have made remarkable progress but still struggle to achieve lifelike mimicry. This paper proposes "TalkingStyle", a novel method to generate personalized talking avatars while retaining the talking style of the person. Our approach uses a set of audio and animation samples from an individual to create new facial animations that closely resemble their specific talking style, synchronized with speech. We disentangle the style codes from the motion patterns, allowing our method to associate a distinct identifier with each person. To manage each aspect effectively, we employ three separate encoders for style, speech, and motion, ensuring the preservation of the original style while maintaining consistent motion in our stylized talking avatars. Additionally, we propose a new style-conditioned transformer decoder, offering greater flexibility and control over the facial avatar styles. We comprehensively evaluate TalkingStyle through qualitative and quantitative assessments, as well as user studies demonstrating its superior realism and lip synchronization accuracy compared to current state-of-the-art methods. To promote transparency and further advancements in the field, we also make the source code publicly available at https://github.com/wangxuanx/TalkingStyle.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38416615

RESUMO

In this study, we devise a framework for volumetrically reconstructing fluid from observable, measurable free surface motion. Our innovative method amalgamates the benefits of deep learning and conventional simulation to preserve the guiding motion and temporal coherence of the reproduced fluid. We infer surface velocities by encoding and decoding spatiotemporal features of surface sequences, and a 3D CNN is used to generate the volumetric velocity field, which is then combined with 3D labels of obstacles and boundaries. Concurrently, we employ a network to estimate the fluid's physical properties. To progressively evolve the flow field over time, we input the reconstructed velocity field and estimated parameters into the physical simulator as the initial state. Our approach yields promising results for both synthetic fluid generated by different fluid solvers and captured real fluid. The developed framework naturally lends itself to a variety of graphics applications, such as 1) effective reproductions of fluid behaviors visually congruent with the observed surface motion, and 2) physics-guided re-editing of fluid scenes. Extensive experiments affirm that our novel method surpasses state-of-the-art approaches for 3D fluid inverse modeling and animation in graphics.

11.
IEEE Trans Vis Comput Graph ; 30(4): 1998-2010, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38090860

RESUMO

In this article, we present a unified framework to simulate non-Newtonian behaviors. We combine viscous and elasto-plastic stress into a unified particle solver to achieve various non-Newtonian behaviors ranging from fluid-like to solid-like. Our constitutive model is based on a Generalized Maxwell model, which incorporates viscosity, elasticity and plasticity in one non-linear framework by a unified way. On the one hand, taking advantage of the viscous term, we construct a series of strain-rate dependent models for classical non-Newtonian behaviors such as shear-thickening, shear-thinning, Bingham plastic, etc. On the other hand, benefiting from the elasto-plastic model, we empower our framework with the ability to simulate solid-like non-Newtonian behaviors, i.e., visco-elasticity/plasticity. In addition, we enrich our method with a heat diffusion model to make our method flexible in simulating phase change. Through sufficient experiments, we demonstrate a wide range of non-Newtonian behaviors ranging from viscous fluid to deformable objects. We believe this non-Newtonian model will enhance the realism of physically-based animation, which has great potential for computer graphics.

12.
ScientificWorldJournal ; 2013: 838176, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23853542

RESUMO

The occurrence and distribution of microcystins were investigated in Lake Taihu, the third largest lake in China. An extensive survey, larger and broader in scale than previous studies, was conducted in summer 2010. The highest microcystin concentration was found at southern part of Taihu, which was newly included in this survey. In northern coastal areas, total cellular concentrations of 20 to 44 µg/L were observed. In northern offshore waters, levels were up to 4.8 µg/L. Microcystin occurrence was highly correlated with chemical oxygen demand, turbidity, and chlorophyll-a. Extracellular/total cellular microcystin (E/T) ratios were calculated and compared to other water quality parameters. A higher correlation was found using E/T ratios than original microcystin values. These results show that algal blooms are having a severe impact on Lake Taihu, and further and extensive monitoring and research are required to suppress blooms effectively.


Assuntos
Lagos/análise , Lagos/microbiologia , Microcistinas/análise , Microcystis/isolamento & purificação , Microbiologia da Água , Poluentes Químicos da Água/análise , Poluição Química da Água/análise , China , Lagos/química , Poluição Química da Água/estatística & dados numéricos
13.
IEEE Trans Vis Comput Graph ; 29(11): 4361-4371, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37788214

RESUMO

We present FineStyle, a novel framework for motion style transfer that generates expressive human animations with specific styles for virtual reality and vision fields. It incorporates semantic awareness, which improves motion representation and allows for precise and stylish animation generation. Existing methods for motion style transfer have all failed to consider the semantic meaning behind the motion, resulting in limited controls over the generated human animations. To improve, FineStyle introduces a new cross-modality fusion module called Dual Interactive-Flow Fusion (DIFF). As the first attempt, DIFF integrates motion style features and semantic flows, producing semantic-aware style codes for fine-grained motion style transfer. FineStyle uses an innovative two-stage semantic guidance approach that leverages semantic clues to enhance the discriminative power of both semantic and style features. At an early stage, a semantic-guided encoder introduces distinct semantic clues into the style flow. Then, at a fine stage, both flows are further fused interactively, selecting the matched and critical clues from both flows. Extensive experiments demonstrate that FineStyle outperforms state-of-the-art methods in visual quality and controllability. By considering the semantic meaning behind motion style patterns, FineStyle allows for more precise control over motion styles. Source code and model are available on https://github.com/XingliangJin/Fine-Style.git.

14.
IEEE Trans Pattern Anal Mach Intell ; 45(7): 8477-8493, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37022018

RESUMO

Graph Convolutional Networks (GCNs) have successfully boosted skeleton-based human action recognition. However, existing GCN-based methods mostly cast the problem as separated person's action recognition while ignoring the interaction between the action initiator and the action responder, especially for the fundamental two-person interactive action recognition. It is still challenging to effectively take into account the intrinsic local-global clues of the two-person activity. Additionally, message passing in GCN depends on adjacency matrix, but skeleton-based human action recognition methods tend to calculate the adjacency matrix with the fixed natural skeleton connectivity. It means that messages can only travel along a fixed path at different layers of the network or in different actions, which greatly reduces the flexibility of the network. To this end, we propose a novel graph diffusion convolutional network for skeleton based semantic recognition of two-person actions by embedding the graph diffusion into GCNs. At technical fronts, we dynamically construct the adjacency matrix based on practical action information, so that we can guide the message propagation in a more meaningful way. Simultaneously, we introduce the frame importance calculation module to conduct dynamic convolution, so that we can avoid the negative effect caused by the traditional convolution, wherein the shared weights may fail to capture key frames or be affected by noisy frames. Besides, we comprehensively leverage the multidimensional features related to joints' local visual appearances, global spatial relationship and temporal coherency, and for different features, different metrics are designed to measure the similarity underlying the corresponding real physical law of the motions. Moreover, extensive experiments and comprehensive evaluations on four public large-scale datasets (NTU-RGB+D 60, NTU-RGB+D 120, Kinetics-Skeleton 400, and SBU-Interaction) demonstrate that our method outperforms the state-of-the-art methods.

15.
Artigo em Inglês | MEDLINE | ID: mdl-37126612

RESUMO

High-accuracy, high-efficiency physics-based fluid-solid interaction is essential for reality modeling and computer animation in online games or real-time Virtual Reality (VR) systems. However, the large-scale simulation of incompressible fluid and its interaction with the surrounding solid environment is either time-consuming or suffering from the reduced time/space resolution due to the complicated iterative nature pertinent to numerical computations of involved Partial Differential Equations (PDEs). In recent years, we have witnessed significant growth in exploring a different, alternative data-driven approach to addressing some of the existing technical challenges in conventional model-centric graphics and animation methods. This paper showcases some of our exploratory efforts in this direction. One technical concern of our research is to address the central key challenge of how to best construct the numerical solver effectively and how to best integrate spatiotemporal/dimensional neural networks with the available MPM's pressure solvers. In particular, we devise the MPMNet, a hybrid data-driven framework supporting the popular and powerful Material Point Method (MPM), to combine the comprehensive properties of MPM in numerically handling physical behaviors ranging from fluid to deformable solids and the high efficiency of data-driven models. At the architectural level, our MPMNet comprises three primary components: A data processing module to describe the physical properties by way of the input fields; A deep neural network group to learn the spatiotemporal features; And an iterative refinement process to continue to reduce possible numerical errors. The goal of these special technical developments is to aim at involved numerical acceleration while preserving physical accuracy, realizing efficient and accurate fluid-solid interactions in a data-driven fashion. The extensive experimental results verify that our MPMNet can tremendously speed up the computation compared with the popular numerical methods as the complexity of interaction scenes increases while better retaining the numerical accuracy.

16.
Environ Sci Pollut Res Int ; 30(34): 82717-82731, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37328726

RESUMO

The river-lake transitional zone provides a unique environment for the biological community and can reduce pollution inputs in lake ecosystems from their catchments. To explore environmental conditions with high purification potential in Lake Taihu and indicator species, we examined the river-to-lake changes in water and sediment quality and benthic invertebrate communities in the transitional zone of four regions. The spatial variations in the environment and invertebrate community observed in this study followed the previously reported patterns in Taihu; the northern and western regions were characterized by higher nutrient concentrations in water, higher heavy metal concentrations in sediment, and higher total invertebrate density and biomass dominated by pollution-tolerant oligochaetes and chironomids. Although nutrient concentrations were low and transparency was high in the eastern region, the taxon richness was the lowest there, which disagreed with the previous findings and might be due to a poor cover of macrophytes in this study. The river-to-lake change was large in the southern region for water quality and the invertebrate community. Water circulation induced by strong wind-wave actions in the lake sites of the southern region is assumed to have promoted photosynthetic and nutrient uptake activities and favored invertebrates that require well-aerated conditions such as polychaetes and burrowing crustaceans. Invertebrates usually adapted to brackish and saline environments are suggested to be indicators of a well-circulated environment with active biogeochemical processes and a less eutrophic state in Taihu, and wind-wave actions are key to maintaining such a community and natural purifying processes.


Assuntos
Ecossistema , Lagos , Animais , Lagos/química , Sedimentos Geológicos , Invertebrados , Biomassa , China , Eutrofização , Monitoramento Ambiental
17.
Artigo em Inglês | MEDLINE | ID: mdl-37432832

RESUMO

Virtual reality (VR) techniques can significantly enhance motor imagery training by creating a strong illusion of action for central sensory stimulation. In this study, we establish a precedent by using surface electromyography (sEMG) of contralateral wrist movement to trigger virtual ankle movement through an improved data-driven approach with a continuous sEMG signal for fast and accurate intention recognition. Our developed VR interactive system can provide feedback training for stroke patients in the early stages, even if there is no active ankle movement. Our objectives are to evaluate: 1) the effects of VR immersion mode on body illusion, kinesthetic illusion, and motor imagery performance in stroke patients; 2) the effects of motivation and attention when utilizing wrist sEMG as a trigger signal for virtual ankle motion; 3) the acute effects on motor function in stroke patients. Through a series of well-designed experiments, we have found that, compared to the 2D condition, VR significantly increases the degree of kinesthetic illusion and body ownership of the patients, and improves their motor imagery performance and motor memory. When compared to conditions without feedback, using contralateral wrist sEMG signals as trigger signals for virtual ankle movement enhances patients' sustained attention and motivation during repetitive tasks. Furthermore, the combination of VR and feedback has an acute impact on motor function. Our exploratory study suggests that the sEMG-based immersive virtual interactive feedback provides an effective option for active rehabilitation training for severe hemiplegia patients in the early stages, with great potential for clinical application.

18.
PLoS One ; 17(12): e0278533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36490243

RESUMO

Taking 30 provinces in China from 2011 to 2020 as a research sample, this paper empirically tests the impact of digital village construction on carbon emissions. This study found that there is an "inverted U" curve relationship between digital rural construction and rural carbon emissions. Agricultural planting structure and agricultural technology efficiency are important ways for digital village construction to reduce agricultural carbon emissions. The study also found that the higher the level of economic development, the stronger the carbon emission reduction effect of digital village construction. In addition, there are also significant differences in the carbon emission reduction effect of digital village construction in regions with different environmental regulation intensities. Finally, in terms of the relationship between digital economic activities and carbon emission reduction, the research conclusions of this paper have important implications.


Assuntos
Carbono , Desenvolvimento Econômico , Carbono/análise , Agricultura , Dióxido de Carbono/análise , China
19.
Comput Biol Med ; 148: 105876, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863247

RESUMO

Accurate thoracic CT image registration remains challenging due to complex joint deformations and different motion patterns in multiple organs/tissues during breathing. To combat this, we devise a hierarchical anatomical structure-aware based registration framework. It affords a coordination scheme necessary for constraining a general free-form deformation (FFD) during thoracic CT registration. The key is to integrate the deformations of different anatomical structures in a divide-and-conquer way. Specifically, a deformation ability-aware dissimilarity metric is proposed for complex joint deformations containing large-scale flexible deformation of the lung region, rigid displacement of the bone region, and small-scale flexible deformation of the rest region. Furthermore, a motion pattern-aware regularization is devised to handle different motion patterns, which contain sliding motion along the lung surface, almost no displacement of the spine and smooth deformation of other regions. Moreover, to accommodate large-scale deformation, a novel hierarchical strategy, wherein different anatomical structures are fused on the same control lattice, registers images from coarse to fine via elaborate Gaussian pyramids. Extensive experiments and comprehensive evaluations have been executed on the 4D-CT DIR and 3D DIR COPD datasets. It confirms that this newly proposed method is locally comparable to state-of-the-art registration methods specializing in local deformations, while guaranteeing overall accuracy. Additionally, in contrast to the current popular learning-based methods that typically require dozens of hours or more pre-training with powerful graphics cards, our method only takes an average of 63 s to register a case with an ordinary graphics card of RTX2080 SUPER, making our method still worth promoting. Our code is available at https://github.com/heluxixue/Structure_Aware_Registration/tree/master.


Assuntos
Algoritmos , Tomografia Computadorizada Quadridimensional , Processamento de Imagem Assistida por Computador , Pulmão , Respiração
20.
IEEE Trans Image Process ; 31: 6649-6663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36260595

RESUMO

Recent research advances in salient object detection (SOD) could largely be attributed to ever-stronger multi-scale feature representation empowered by the deep learning technologies. The existing SOD deep models extract multi-scale features via the off-the-shelf encoders and combine them smartly via various delicate decoders. However, the kernel sizes in this commonly-used thread are usually "fixed". In our new experiments, we have observed that kernels of small size are preferable in scenarios containing tiny salient objects. In contrast, large kernel sizes could perform better for images with large salient objects. Inspired by this observation, we advocate the "dynamic" scale routing (as a brand-new idea) in this paper. It will result in a generic plug-in that could directly fit the existing feature backbone. This paper's key technical innovations are two-fold. First, instead of using the vanilla convolution with fixed kernel sizes for the encoder design, we propose the dynamic pyramid convolution (DPConv), which dynamically selects the best-suited kernel sizes w.r.t. the given input. Second, we provide a self-adaptive bidirectional decoder design to accommodate the DPConv-based encoder best. The most significant highlight is its capability of routing between feature scales and their dynamic collection, making the inference process scale-aware. As a result, this paper continues to enhance the current SOTA performance. Both the code and dataset are publicly available at https://github.com/wuzhenyubuaa/DPNet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA