Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(3): e2305943, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37681501

RESUMO

Photoresponsive nitric oxide (NO)-releasing materials (NORMs) enable the spatiotemporal delivery of NO to facilitate their potential applications in physiological conditions. Here two novel metal-organic frameworks (MOFs)-based photoactive NORMs achieved by the incorporation of prefunctionalized NO donors into the photosensitive Fe-MOFs via a postmodification strategy is reported. The modified Fe-MOFs display superior photoactivity of NO release when exposed to visible light (up to 720 nm). Significantly, the visible-light-driven NO release properties are further corroborated by their efficient antibacterial performance.


Assuntos
Estruturas Metalorgânicas , Óxido Nítrico , Elétrons , Luz , Antibacterianos/farmacologia
2.
Cell Mol Life Sci ; 79(1): 42, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34921639

RESUMO

Targeting airway goblet cell metaplasia is a novel strategy that can potentially reduce the chronic obstructive pulmonary disease (COPD) symptoms. Tumor suppressor liver kinase B1 (LKB1) is an important regulator of the proliferation and differentiation of stem/progenitor cells. In this study, we report that LKB1 expression was downregulated in the lungs of patients with COPD and in those of cigarette smoke-exposed mice. Nkx2.1Cre; Lkb1f/f mice with conditional loss of Lkb1 in mouse lung epithelium displayed airway mucus hypersecretion and pulmonary macrophage infiltration. Single-cell transcriptomic analysis of the lung tissues from Nkx2.1Cre; Lkb1f/f mice further revealed that airway goblet cell differentiation was altered in the absence of LKB1. An organoid culture study demonstrated that Lkb1 deficiency in mouse airway (club) progenitor cells promoted the expression of FIZZ1/RELM-α, which drove airway goblet cell differentiation and pulmonary macrophage recruitment. Additionally, monocyte-derived macrophages in the lungs of Nkx2.1Cre; Lkb1f/f mice exhibited an alternatively activated M2 phenotype, while expressing RELM-α, which subsequently aggravated airway goblet cell metaplasia. Our findings suggest that the LKB1-mediated crosstalk between airway progenitor cells and macrophages regulates airway goblet cell metaplasia. Moreover, our data suggest that LKB1 agonists might serve as a potential therapeutic option to treat respiratory disorders associated with goblet cell metaplasia.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/fisiologia , Proteínas Quinases Ativadas por AMP/fisiologia , Células Caliciformes/metabolismo , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Animais , Comunicação Celular , Linhagem Celular , Fibroblastos , Células Caliciformes/patologia , Humanos , Pulmão/patologia , Camundongos , Camundongos Transgênicos
3.
Bull Entomol Res ; 111(2): 146-152, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32677606

RESUMO

Aggressive behaviour is common in animals and typically has lifetime consequences. As younger males have higher residual reproductive value than older males and lose more from injuries than older males do, the propensity for fighting tends to increase with age in many empirical reports and species. However, fighting patterns in those empirical reports cannot confirm the hypothesis that individuals cannot readily inflict injuries on their opponents. To address this shortcoming, a parasitoid wasp species, Anastatus disparis (Hymenoptera: Eupelmidae), was used as an experimental model to explore the characteristics of aggression from a life-history perspective; this wasp exhibits extreme fighting, resulting in contestants experiencing injury and death. Results showed that the energetic costs of fighting to injury significantly shortened life and caused the loss of most mating ability. Inconsistent with general predictions, the frequency and intensity of fighting in A. disparis significantly decreased with male age. Further study results showed significantly more young males were received by and successfully mated with virgin females, and most genes related to energy metabolism were downregulated in aged males. Our study provided supporting evidence that young A. disparis males show more aggression likely because of their resource holding potential and sexual attractiveness decline with age.


Assuntos
Agressão/fisiologia , Vespas/fisiologia , Fatores Etários , Animais , Metabolismo Energético/fisiologia , Feminino , Características de História de Vida , Masculino , Modelos Animais , Reprodução/fisiologia , Comportamento Sexual Animal
4.
BMC Genomics ; 21(1): 492, 2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32682391

RESUMO

BACKGROUND: Differences in the expression of genes present in both sexes are assumed to contribute to sex differences including behavioural, physiological and morphological dimorphisms. For enriching our knowledge of gender differences in an important egg parasitoid wasp, Anastatus disparis (Hymenoptera: Eupelmidae), sex-biased differences in gene expression were investigated using Illumina-based transcriptomic analysis. RESULTS: A total of 15,812 resulting unigenes were annotated, and a large set of genes accounting for 50.09% of the total showed sex-biased expression and included 630 sex-specific genes. Gene Ontology (GO) enrichment analyses showed that the functional categories associated with sex-biased genes were mainly related to reproduction. In addition, the transcriptome data provided evidence that sex pheromones in A. disparis are produced by the female, and activity of Δ12-desaturases appear to have been replaced by Δ9-desaturases playing roles in sex pheromone production. The large set of sex-biased genes identified in this study provide a molecular background for sexually dimorphic traits such as flyability, longevity, and aggression in this species and suggests candidate venom proteins expressed only in females that could be used for biological control. CONCLUSIONS: This study provides comprehensive insight into sexually dimorphic traits of a parasitoid wasp and can inform future research into the molecular mechanisms underlying such traits and the application of parasitoids to the biological control of pest species.


Assuntos
Vespas/genética , Agressão , Animais , Feminino , Voo Animal , Perfilação da Expressão Gênica , Longevidade/genética , Masculino , Caracteres Sexuais , Transcriptoma , Vespas/fisiologia
5.
Opt Lett ; 45(17): 4899-4902, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870885

RESUMO

In this Letter, we report the experimental observations of a tunable curved photonic nanojet (photonic hook) generated by a 5 µm polydimethylsiloxane microcylinder deposited on a silicon substrate and illuminated by 405 nm laser beam. A moveable opaque aluminum-mask is mounted in front of the microcylinder implementing partial illumination and imparting spatial curvature to the photonic nanojet. Experimental results of main parameters (tilt angle, width, and intensity) of emerging photonic hooks exhibit close agreement with numerical predictions of the near-field optical structures. The experimentally measured full widths at half-maximum of photonic hooks are 0.48λ, 0.56λ, and 0.76λ for tilt angles of θ=0∘, 5.7°, and 20.1°, respectively. Photonic hooks possess great potential in complex manipulation such as super-resolution imaging, surface fabrication, and optomechanical manipulation along curved trajectories.

6.
J Insect Sci ; 20(3)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32458992

RESUMO

Aggressive behavior is widely observed in animal species for acquiring important resources and usually includes both dangerous and nondangerous fighting patterns. Only a few species show dangerous fighting patterns that are defined by fights ending with contestants being severely injured or killed. Prior experience, an important factor in many species, has been demonstrated to affect a contestant's subsequent fighting behavior. Few studies have focused on the effect of experience on aggression involving dangerous fighting patterns. Here, an egg parasitoid wasp, Anastatus disparis, which shows extreme and dangerous fighting behavior to acquire mating opportunities, was used as an experimental model. Our results showed that the fighting intensity of the winning males significantly decreased subsequent fighting behavior, which was inconsistent with general predictions. Transcriptomic analyses showed that many genes related to energy metabolism were downregulated in winners, and winners increased their fighting intensity after dietary supplementation. Our study suggested that fighting in A. disparis is a tremendous drain on energy. Thus, although males won at combat, significant reductions in available energy constrained the intensity of subsequent fights and influenced strategic decisions. In addition, winners might improve their fighting skills and abilities from previous contests, and their fighting intensity after dietary supplementation was significantly higher than that of males without any fighting experience. Generally, in A. disparis, although winners increased their fighting ability with previous experience, the available energy in winners was likely to be a crucial factor affecting the intensity and strategic decisions in subsequent fights.


Assuntos
Comportamento Sexual Animal , Vespas/fisiologia , Agressão , Animais , Comportamento Animal , Acontecimentos que Mudam a Vida , Masculino
7.
Chin Med Sci J ; 35(1): 43-53, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32299537

RESUMO

Objective Angiotensin Ⅱ (Ang Ⅱ)-induced vascular damage is a major risk of hypertension. However, the underlying molecular mechanism of AngⅡ-induced vascular damage is still unclear. In this study, we explored the novel mechanism associated with Ang II-induced hypertension. Methods We treated 8- to 12-week-old C57BL/6J male mice with saline and Ang Ⅱ(0.72 mg/kg·d) for 28 days, respectively. Then the RNA of the media from the collected mice aortas was extracted for transcriptome sequencing. Principal component analysis was applied to show a clear separation of different samples and the distribution of differentially expressed genes was manifested by Volcano plot. Functional annotations including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed to reveal the molecular mechanism of Ang Ⅱ-induced hypertension. Finally, the differentially expressed genes were validated by using quantitative real-time PCR. Results The result revealed that a total of 773 genes, including 599 up-regulated genes and 174 down-regulated genes, were differentially expressed in the aorta of Ang Ⅱ-induced hypertension mice model. Functional analysis of differentially expressed genes manifested that various cellular processes may be involved in the Ang Ⅱ-induced hypertension, including some pathways associated with hypertension such as extracellular matrix, inflammation and immune response. Interestingly, we also found that the differentially expressed genes were enriched in vascular aging pathway, and further validated that the expression levels of insulin-like growth factor 1 and adiponectin were significantly increased (P<0.05). Conclusion We identify that vascular aging is involved in Ang Ⅱ-induced hypertension, and insulin-like growth factor 1 and adiponectin may be important candidate genes leading to vascular aging.


Assuntos
Envelhecimento , Aorta/metabolismo , Perfilação da Expressão Gênica/métodos , Hipertensão/genética , Angiotensina II , Animais , Aorta/fisiopatologia , Pressão Sanguínea/genética , Ontologia Genética , Hipertensão/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
BMC Ecol ; 19(1): 21, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31122223

RESUMO

BACKGROUND: Aggressive behaviour is widely observed in animal kingdom, which compete for resources such as territory, food and mates. Resource value is the most important non-strategic factor influencing fighting behaviour, and may vary among contests and contestants. Usually, contestants adjust their fighting behaviour when the resource value changes, and as potentially damaging and energetically costly, individuals of most species usually avoid conflict escalation. However, in a quasi-gregarious egg parasitoid, Anastatus disparis (Hymenoptera: Eupelmidae), mates are valuable resources and females mate only once; thus, males engage in frequently extreme combat behaviour to acquire mating opportunities, even in the absence of females. In this study, we attempted to test whether males of this species have the ability to adjust their fighting behaviour in response to changes in the objective value of female. RESULTS: Our results suggested that objective resource value in A. disparis is likely to be influenced by female mating status rather than by fecundity. Consistent with a number of empirical studies, A. disparis males adjusted their fighting behaviour according to the value of the contested resources: males significantly increased their fighting intensity to acquire mating opportunities with virgin females but decreased their fighting intensity for mated females. We also found that rather than chemical cues, visual cues and physical sexual contact appear to play a role in determining males' ability to detect variation in female mating status. CONCLUSIONS: Our study suggested that although in this species, males have evolved extreme fighting behaviour and females are valuable resources, males do not always escalate fighting behaviour in competition for mating with a female. Valuable resources and variation in resource value were detected and estimated by A. disparis males, which then adjusted their fighting behaviour accordingly and to some extent avoided incoming fighting costs.


Assuntos
Himenópteros , Agressão , Animais , Sinais (Psicologia) , Feminino , Fertilidade , Masculino , Reprodução , Comportamento Sexual Animal
9.
Circulation ; 136(21): 2051-2067, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-28947430

RESUMO

BACKGROUND: Pathological cardiac hypertrophy induced by stresses such as aging and neurohumoral activation is an independent risk factor for heart failure and is considered a target for the treatment of heart failure. However, the mechanisms underlying pathological cardiac hypertrophy remain largely unknown. We aimed to investigate the roles of SIRT2 in aging-related and angiotensin II (Ang II)-induced pathological cardiac hypertrophy. METHODS: Male C57BL/6J wild-type and Sirt2 knockout mice were subjected to the investigation of aging-related cardiac hypertrophy. Cardiac hypertrophy was also induced by Ang II (1.3 mg/kg/d for 4 weeks) in male C57BL/6J Sirt2 knockout mice, cardiac-specific SIRT2 transgenic (SIRT2-Tg) mice, and their respective littermates (8 to ≈12 weeks old). Metformin (200 mg/kg/d) was used to treat wild-type and Sirt2 knockout mice infused with Ang II. Cardiac hypertrophy, fibrosis, and cardiac function were examined in these mice. RESULTS: SIRT2 protein expression levels were downregulated in hypertrophic hearts from mice. Sirt2 knockout markedly exaggerated cardiac hypertrophy and fibrosis and decreased cardiac ejection fraction and fractional shortening in aged (24-month-old) mice and Ang II-infused mice. Conversely, cardiac-specific SIRT2 overexpression protected the hearts against Ang II-induced cardiac hypertrophy and fibrosis and rescued cardiac function. Mechanistically, SIRT2 maintained the activity of AMP-activated protein kinase (AMPK) in aged and Ang II-induced hypertrophic hearts in vivo as well as in cardiomyocytes in vitro. We identified the liver kinase B1 (LKB1), the major upstream kinase of AMPK, as the direct target of SIRT2. SIRT2 bound to LKB1 and deacetylated it at lysine 48, which promoted the phosphorylation of LKB1 and the subsequent activation of LKB1-AMPK signaling. Remarkably, the loss of SIRT2 blunted the response of AMPK to metformin treatment in mice infused with Ang II and repressed the metformin-mediated reduction of cardiac hypertrophy and protection of cardiac function. CONCLUSIONS: SIRT2 promotes AMPK activation by deacetylating the kinase LKB1. Loss of SIRT2 reduces AMPK activation, promotes aging-related and Ang II-induced cardiac hypertrophy, and blunts metformin-mediated cardioprotective effects. These findings indicate that SIRT2 will be a potential target for therapeutic interventions in aging- and stress-induced cardiac hypertrophy.


Assuntos
Cardiomegalia/prevenção & controle , Metformina/farmacologia , Miocárdio/enzimologia , Sirtuína 2/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilação , Fatores Etários , Envelhecimento/metabolismo , Angiotensina II , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/enzimologia , Cardiomegalia/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Predisposição Genética para Doença , Lisina , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Miocárdio/patologia , Fenótipo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Sirtuína 2/deficiência , Sirtuína 2/genética , Volume Sistólico/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
10.
Nucleic Acids Res ; 44(6): 2613-27, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26615201

RESUMO

The Hox genes encode transcription factors that determine embryonic pattern formation. In embryonic stem cells, the Hox genes are silenced by PRC2. Recent studies have reported a role for long noncoding RNAs in PRC2 recruitment in vertebrates. However, little is known about how PRC2 is recruited to the Hox genes in ESCs. Here, we used stable knockdown and knockout strategies to characterize the function of the long noncoding RNAGm15055 in the regulation of Hoxa genes in mouse ESCs. We found that Gm15055 is highly expressed in mESCs and its expression is maintained by OCT4.Gm15055 represses Hoxa gene expression by recruiting PRC2 to the cluster and maintaining the H3K27me3 modification on Hoxa promoters. A chromosome conformation capture assay revealed the close physical association of the Gm15055 locus to multiple sites at the Hoxa gene cluster in mESCs, which may facilitate the in cis targeting of Gm15055RNA to the Hoxa genes. Furthermore, an OCT4-responsive positive cis-regulatory element is found in the Gm15055 gene locus, which potentially regulates both Gm15055 itself and the Hoxa gene activation. This study suggests how PRC2 is recruited to the Hoxa locus in mESCs, and implies an elaborate mechanism for Hoxa gene regulation in mESCs.


Assuntos
Proteínas de Homeodomínio/genética , Células-Tronco Embrionárias Murinas/metabolismo , Família Multigênica , Fator 3 de Transcrição de Octâmero/genética , Complexo Repressor Polycomb 2/genética , RNA Longo não Codificante/genética , Animais , Linhagem Celular , Cromatina/química , Cromatina/metabolismo , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
11.
Eur Heart J ; 38(18): 1389-1398, 2017 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-27099261

RESUMO

AIMS: Oxidative stress contributes to the development of cardiac hypertrophy and heart failure. One of the mitochondrial sirtuins, Sirt4, is highly expressed in the heart, but its function remains unknown. The aim of the present study was to investigate the role of Sirt4 in the pathogenesis of pathological cardiac hypertrophy and the molecular mechanism by which Sirt4 regulates mitochondrial oxidative stress. METHODS AND RESULTS: Male C57BL/6 Sirt4 knockout mice, transgenic (Tg) mice exhibiting cardiac-specific overexpression of Sirt4 (Sirt4-Tg) and their respective controls were treated with angiotensin II (Ang II, 1.1 mg/kg/day). At 4 weeks, hypertrophic growth of cardiomyocytes, fibrosis and cardiac function were analysed. Sirt4 deficiency conferred resistance to Ang II infusion by significantly suppressing hypertrophic growth, and the deposition of fibrosis. In Sirt4-Tg mice, aggravated hypertrophy and reduced cardiac function were observed compared with non-Tg mice following Ang II treatment. Mechanistically, Sirt4 inhibited the binding of manganese superoxide dismutase (MnSOD) to Sirt3, another member of the mitochondrial sirtuins, and increased MnSOD acetylation levels to reduce its activity, resulting in elevated reactive oxygen species (ROS) accumulation upon Ang II stimulation. Furthermore, inhibition of ROS with manganese 5, 10, 15, 20-tetrakis-(4-benzoic acid) porphyrin, a mimetic of SOD, blocked the Sirt4-mediated aggravation of the hypertrophic response in Ang II-treated Sirt4-Tg mice. CONCLUSIONS: Sirt4 promotes hypertrophic growth, the generation of fibrosis and cardiac dysfunction by increasing ROS levels upon pathological stimulation. These findings reveal a role of Sirt4 in pathological cardiac hypertrophy, providing a new potential therapeutic strategy for this disease.


Assuntos
Cardiomegalia/enzimologia , Proteínas Mitocondriais/fisiologia , Sirtuínas/fisiologia , Superóxido Dismutase/antagonistas & inibidores , Angiotensina II/farmacologia , Animais , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/enzimologia , Miócitos Cardíacos/enzimologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Remodelação Vascular/fisiologia , Vasoconstritores/farmacologia
13.
Blood ; 123(2): 261-70, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24255919

RESUMO

Promyelocytic leukemia protein (PML) has been implicated as a participant in multiple cellular processes including senescence, apoptosis, proliferation, and differentiation. Studies of PML function in hematopoietic differentiation previously focused principally on its myeloid activities and also indicated that PML is involved in erythroid colony formation. However, the exact role that PML plays in erythropoiesis is essentially unknown. In this report, we found that PML4, a specific PML isoform expressed in erythroid cells, promotes endogenous erythroid genes expression in K562 and primary human erythroid cells. We show that the PML4 effect is GATA binding protein 1 (GATA-1) dependent using GATA-1 knockout/rescued G1E/G1E-ER4 cells. PML4, but not other detected PML isoforms, directly interacts with GATA-1 and can recruit it into PML nuclear bodies. Furthermore, PML4 facilitates GATA-1 trans-activation activity in an interaction-dependent manner. Finally, we present evidence that PML4 enhances GATA-1 occupancy within the globin gene cluster and stimulates cooperation between GATA-1 and its coactivator p300. These results demonstrate that PML4 is an important regulator of GATA-1 and participates in erythroid differention by enhancing GATA-1 trans-activation activity.


Assuntos
Diferenciação Celular/fisiologia , Células Eritroides/citologia , Células Eritroides/metabolismo , Fator de Transcrição GATA1/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas Supressoras de Tumor/metabolismo , Acetilação , Proteína p300 Associada a E1A/metabolismo , Fator de Transcrição GATA1/química , Fator de Transcrição GATA1/metabolismo , Expressão Gênica , Humanos , Células K562 , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteína da Leucemia Promielocítica , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Dedos de Zinco
14.
Stem Cells ; 33(7): 2135-47, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25940188

RESUMO

Mouse somatic cells can be reprogrammed into induced pluripotent stem cells by defined factors known to regulate pluripotency, including Oct4, Sox2, Klf4, and c-Myc. Together with Oct4, Sox2 plays a major role as a master endogenous pluripotent genes trigger in reprogramming. It has been reported that Sirtuin 1 (Sirt1), a member of the Sirtuin family of NAD(+) -dependent protein deacetylases, is involved in embryonic stem cell antioxidation, differentiation, and individual development. However, as a deacetylation enzyme, whether Sirt1 influences reprogramming through its post-translational modification function remains unknown. In this study, we provide evidence that deacetylation of Sox2 by Sirt1 is required for reprogramming. We found that a low level of Sox2 acetylation could significantly increase reprogramming efficiency. Furthermore, we found that Sox2 can be deacetylated by Sirt1 in an Oct4-mediated manner. Compared with wild-type cells, Sirt1-null mouse embryonic fibroblasts exhibit decreased reprogramming efficiency, and overexpression of Sirt1 rescues this defect. In addition, Sirt1 functions in the regulation of reprogramming through deacetylating Sox2. Taken together, we have identified a new regulatory role of Sirt1 in reprogramming and provided a link between deacetylation events and somatic cell reprogramming. Stem Cells 2015;33:2135-2147.


Assuntos
Fatores de Transcrição SOXB1/metabolismo , Sirtuína 1/metabolismo , Animais , Diferenciação Celular , Reprogramação Celular , Fator 4 Semelhante a Kruppel , Camundongos
15.
Opt Lett ; 40(23): 5479-81, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26625030

RESUMO

The two-phase MgAl2O4-Ce:YAG ceramic phosphor was fabricated by the solid-state reaction in vacuum, and it presented a better luminous efficacy than the single-phase transparent ceramic phosphor when directly combined with the blue light-emitting diodes. The addition of MgAl2O4 implemented the control of the grain sizes and the variation of microstructure, and the microstructure optimization further improved the luminous efficacy of the composite phase ceramic phosphor. A maximum luminous efficacy attaining 99 lm/W at the correlated color temperature 5000 K was obtained. The composite phase ceramic phosphor is expected to be a promising candidate for use in the high-power light source.

16.
Nucleic Acids Res ; 40(11): 4804-15, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22328728

RESUMO

The higher order chromatin structure has recently been revealed as a critical new layer of gene transcriptional control. Changes in higher order chromatin structures were shown to correlate with the availability of transcriptional factors and/or MAR (matrix attachment region) binding proteins, which tether genomic DNA to the nuclear matrix. How posttranslational modification to these protein organizers may affect higher order chromatin structure still pending experimental investigation. The type III histone deacetylase silent mating type information regulator 2, S. cerevisiae, homolog 1 (SIRT1) participates in many physiological processes through targeting both histone and transcriptional factors. We show that MAR binding protein SATB1, which mediates chromatin looping in cytokine, MHC-I and ß-globin gene loci, as a new type of SIRT1 substrate. SIRT1 expression increased accompanying erythroid differentiation and the strengthening of ß-globin cluster higher order chromatin structure, while knockdown of SIRT1 in erythroid k562 cells weakened the long-range interaction between two SATB1 binding sites in the ß-globin locus, MAR(HS2) and MAR(ε). We also show that SIRT1 activity significantly affects ε-globin gene expression in a SATB1-dependent manner and that knockdown of SIRT1 largely blocks ε-globin gene activation during erythroid differentiation. Our work proposes that SIRT1 orchestrates changes in higher order chromatin structure during erythropoiesis, and reveals the dynamic higher order chromatin structure regulation at posttranslational modification level.


Assuntos
Regulação da Expressão Gênica , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Regiões de Interação com a Matriz , Sirtuína 1/metabolismo , Globinas épsilon/genética , Células Cultivadas , Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hemina/farmacologia , Humanos , Células K562 , Região de Controle de Locus Gênico , Globinas beta/genética , Globinas épsilon/biossíntese
17.
Insect Sci ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369568

RESUMO

Symbiotic microorganisms are essential for the physiological processes of herbivorous pests, including the pear lace bug Stephanitis nashi, which is known for causing extensive damage to garden plants and fruit trees due to its exceptional adaptability to diverse host plants. However, the specific functional effects of the microbiome on the adaptation of S. nashi to its host plants remains unclear. Here, we identified significant microbial changes in S. nashi on 2 different host plants, crabapple and cherry blossom, characterized by the differences in fungal diversity as well as bacterial and fungal community structures, with abundant correlations between bacteria or fungi. Consistent with the microbiome changes, S. nashi that fed on cherry blossom demonstrated decreased metabolites and downregulated key metabolic pathways, such as the arginine and mitogen-activated protein kinase signaling pathway, which were crucial for host plant adaptation. Furthermore, correlation analysis unveiled numerous correlations between differential microorganisms and differential metabolites, which were influenced by the interactions between bacteria or fungi. These differential bacteria, fungi, and associated metabolites may modify the key metabolic pathways in S. nashi, aiding its adaptation to different host plants. These results provide valuable insights into the alteration in microbiome and function of S. nashi adapted to different host plants, contributing to a better understanding of pest invasion and dispersal from a microbial perspective.

18.
Environ Pollut ; 347: 123686, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431248

RESUMO

PM2.5 is known to induce lung injury, but its toxic effects on lung regenerative machinery and the underlying mechanisms remain unknown. In this study, primary mouse alveolar type 2 (AT2) cells, considered stem cells in the gas-exchange barrier, were sorted using fluorescence-activated cell sorting. By developing microfluidic technology with constricted microchannels, we observed that both passage time and impedance opacities of mouse AT2 cells were reduced after PM2.5, indicating that PM2.5 induced a more deformable mechanical property and a higher membrane permeability. In vitro organoid cultures of primary mouse AT2 cells indicated that PM2.5 is able to impair the proliferative potential and self-renewal capacity of AT2 cells but does not affect AT1 differentiation. Furthermore, cell senescence biomarkers, p53 and γ-H2A.X at protein levels, P16ink4a and P21 at mRNA levels were increased in primary mouse AT2 cells after PM2.5 stimulations as shown by immunofluorescent staining and quantitative PCR analysis. Using several advanced single-cell technologies, this study sheds light on new mechanisms of the cytotoxic effects of atmospheric fine particulate matter on lung stem cell behavior.


Assuntos
Células Epiteliais Alveolares , Pulmão , Camundongos , Animais , Células Epiteliais Alveolares/metabolismo , Pulmão/metabolismo , Diferenciação Celular , Senescência Celular , Material Particulado/metabolismo
19.
Chem Sci ; 15(20): 7552-7559, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38784728

RESUMO

Metal nanoclusters (NCs) capable of near-infrared (NIR) photoluminescence (PL) are gaining increasing interest for their potential applications in bioimaging, cell labelling, and phototherapy. However, the limited quantum yield (QY) of NIR emission in metal NCs, especially those emitting beyond 800 nm, hinders their widespread applications. Herein, we present a bright NIR luminescence (PLQY up to 36.7%, ∼830 nm) bimetallic Cu4Pt2 NC, [Cu4Pt2(MeO-C6H5-C[triple bond, length as m-dash]C)4(dppy)4]2+ (dppy = diphenyl-2-pyridylphosphine), with a high yield (up to 67%). Furthermore, by modifying the electronic effects of R in RC[triple bond, length as m-dash]C- (R = MeO-C6H5, F-C6H5, CF3-C6H5, Nap, and Biph), we can effectively modulate phosphorescence properties, including the PLQY, emission wavelength, and excited state decay lifetime. Experimental and computational studies both demonstrate that in addition to the electron effects of substituents, ligand modification enhances luminescence intensity by suppressing non-radiation transitions through intramolecular interactions. Simultaneously, it allows the adjustment of emitting wavelengths by tuning the energy gaps and first excited triplet states through intermolecular interactions of ligand substituents. This study provides a foundation for rational design of the atomic-structures of alloy metal NCs to enhance their PLQY and tailor the PL wavelength of NIR emission.

20.
Basic Res Cardiol ; 108(4): 364, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23744058

RESUMO

Nkx2.5 plays protective roles in cardiac homeostasis and survival in the postnatal hearts. However, the underlying molecular mechanisms that mediate the protective functions of Nkx2.5 remain unknown. Here, we showed that Nkx2.5 was downregulated in response to various stresses and was required for protection against the stress-induced apoptosis of cardiomyocytes. SIRT1, a member of the sirtuin family of proteins, was found to be a direct transcriptional target of Nkx2.5 and was required for the Nkx2.5-mediated protection of cardiomyocytes from doxorubicin (DOX)-induced apoptosis. Moreover, using chromatin immunoprecipitation assays, we found that Nkx2.5 was able to bind to the SIRT1 promoter and that this binding was significantly decreased in DOX-treated mouse hearts. Furthermore, the cardiac-specific overexpression of SIRT1 decreased the DOX-induced apoptosis of cardiomyocytes in SIRT1 transgenic mouse hearts compared with the hearts of their wild-type littermates. These findings demonstrate that SIRT1 acts as a direct transcriptional target of Nkx2.5 that maintains cardiomyocyte homeostasis and survival.


Assuntos
Proteínas de Homeodomínio/fisiologia , Miócitos Cardíacos/fisiologia , Sirtuína 1/fisiologia , Estresse Fisiológico/fisiologia , Fatores de Transcrição/fisiologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Doxorrubicina/farmacologia , Proteína Homeobox Nkx-2.5 , Homeostase/fisiologia , Camundongos , Camundongos Transgênicos , Modelos Animais , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Sirtuína 1/genética , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA