Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Gynecol Pathol ; 43(3): 233-241, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733028

RESUMO

The studies on the molecular classification of endometrioid carcinoma (EC) with microcystic, elongated, and fragmented (MELF) pattern invasion are limited. In this study, 77 cases of ECs with MELF patterns in Chinese women were collected. The molecular classification of the fifth edition of the World Health Organization was used to classify the molecular subtypes using immunohistochemistry staining (mismatch repair [MMR]-immunohistochemistry: MSH2, MSH6, MLH1, and PMS2; p53) and Sanger sequencing targeted POLE . The results showed that the prevalence of the 4 molecular subtypes in EC with MELF pattern was 6.5% (5/77) for POLE mutation, 20.8% (16/77) for MMR deficient, 11.7% (9/77) for p53-mutant, and 61.0% (47/77) for no specific molecular profile. The clinicopathological characteristics of each subtype were compared. The p53-mutant and no specific molecular profile subgroups were associated with higher International Federation of Gynecology and Obstetrics stage and International Federation of Gynecology and Obstetrics grade, deeper myometrial invasion, lymphovascular space invasion, lymph node metastasis, and absence of tumor-infiltrating lymphocytes, whereas the POLE mutation and MMR deficient subgroups were associated with lower aggressive features and prominent tumor-infiltrating lymphocytes. Progression-free survival showed that the p53-mutant and no specific molecular profile subgroups had a poorer prognosis than the POLE mutation and MMR deficient subgroups. However, lymph node metastasis was an independent factor associated with a higher risk of disease recurrence in multivariate analysis. In conclusion, ECs with MELF patterns can be divided into 4 molecular subtypes with discrepancies in aggressive clinicopathological characteristics and tumor-infiltrating lymphocytes. Molecular classification has clinical significance in a morpho-molecular approach for ECs with MELF patterns.

2.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33627391

RESUMO

Influenza A viruses (IAVs) continue to pose an imminent threat to humans due to annual influenza epidemic outbreaks and episodic pandemics with high mortality rates. In this context, the suboptimal vaccine coverage and efficacy, coupled with recurrent events of viral resistance against a very limited antiviral portfolio, emphasize an urgent need for new additional prophylactic and therapeutic options, including new antiviral targets and drugs with new mechanisms of action to prevent and treat influenza virus infection. Here, we characterized a novel influenza A virus nucleoprotein (NP) inhibitor, FA-6005, that inhibited a broad spectrum of human pandemic and seasonal influenza A and B viruses in vitro and protects mice against lethal influenza A virus challenge. The small molecule FA-6005 targeted a conserved NP I41 domain and acted as a potentially broad, multimechanistic anti-influenza virus therapeutic since FA-6005 suppressed influenza virus replication and perturbed intracellular trafficking of viral ribonucleoproteins (vRNPs) from early to late stages. Cocrystal structures of the NP/FA-6005 complex reconciled well with concurrent mutational studies. This study provides the first line of direct evidence suggesting that the newly identified NP I41 pocket is an attractive target for drug development that inhibits multiple functions of NP. Our results also highlight FA-6005 as a promising candidate for further development as an antiviral drug for the treatment of IAV infection and provide chemical-level details for inhibitor optimization.IMPORTANCE Current influenza antivirals have limitations with regard to their effectiveness and the potential emergence of resistance. Therefore, there is an urgent need for broad-spectrum inhibitors to address the considerable challenges posed by the rapid evolution of influenza viruses that limit the effectiveness of vaccines and lead to the emergence of antiviral drug resistance. Here, we identified a novel influenza A virus NP antagonist, FA-6005, with broad-spectrum efficacy against influenza viruses, and our study presents a comprehensive study of the mode of action of FA-6005 with the crystal structure of the compound in complex with NP. The influenza virus inhibitor holds promise as an urgently sought-after therapeutic option offering a mechanism of action complementary to existing antiviral drugs for the treatment of influenza virus infection and should further aid in the development of universal therapeutics.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Proteínas do Nucleocapsídeo , Replicação Viral/efeitos dos fármacos , Animais , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Proteínas do Nucleocapsídeo/antagonistas & inibidores , Proteínas do Nucleocapsídeo/metabolismo , Infecções por Orthomyxoviridae/prevenção & controle , Ligação Proteica
3.
Reprod Biol Endocrinol ; 20(1): 132, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056431

RESUMO

BACKGROUND: Chemoresistance is one of the major obstacles that lead to poor prognosis in cervical cancer. linc00958 was reported to be an oncogene in cervical cancer. However, its role in mediating chemoresistance remains to be revealed. PURPOSE: To explore the regulatory mechanisms of linc00958 in cisplatin-resistant cervical cancer cells and further validate in xenograft mice. METHODS: Online bioinformatic tools were used to conduct the pre-investigation of linc00958/miR-185-5p/RSF-1 and predict the associations between RSF-1 and AKT1/GSK3ß/VEGFA in cervical cancer. RT-qPCR measured the RNA expression levels of linc00958/miR-185-5p/RSF-1 in SiHa and SiHa/DDP. Cell survival rates were evaluated by CCK8 methods after cells were exposed to differential concentrations of DDP. Dual-luciferase reporter methods were used to measure luciferase activity. Western blot measured RSF-1 protein and phosphorylated changes of AKT1/GSK3ß. Immunofluorescence was employed to observe VEGFA secretion in vitro. Tube formation was applied to evaluate the in-vitro changes of angiogenesis. The SiHa/DDP cells stably transfected with pLKO-sh-NC or pLKO-sh-linc00958 plasmids, were injected into mice, establishing xenograft models. The changes in mice weight and tumor volumes were recorded. H&E staining and Immunohistochemistry (IHC) method was further performed. RESULTS: linc00958 expression was higher in SiHa/DDP cells. High linc00958 expression was associated with low overall survival. In SiHa/DDP cells linc00958/miR-185-5p/RSF-1 axis inhibited the cellular resistance to cisplatin and suppressed VEGFA and the tube formation through AKT1/GSK3ß/VEGFA pathway. The knockdown of linc00958 inhibited RSF-1 and Ki67, curbing tumor growth; it also inhibited VEGFA and CD34, decreasing angiogenesis in mice. CONCLUSION: linc00958/miR-185-5p/RSF-1 modulates cisplatin resistance and angiogenesis through AKT1/GSK3ß/VEGFA pathway in cervical cancer.


Assuntos
MicroRNAs , Proteínas Nucleares , Transativadores , Neoplasias do Colo do Útero , Animais , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Feminino , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Patológica/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Transativadores/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Nucleic Acids Res ; 48(19): 11146-11161, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32986843

RESUMO

The six-subunit origin recognition complex (ORC), a DNA replication initiator, defines the localization of the origins of replication in eukaryotes. The Orc6 subunit is the smallest and the least conserved among ORC subunits. It is required for DNA replication and essential for viability in all species. Orc6 in metazoans carries a structural homology with transcription factor TFIIB and can bind DNA on its own. Here, we report a solution structure of the full-length human Orc6 (HsOrc6) alone and in a complex with DNA. We further showed that human Orc6 is composed of three independent domains: N-terminal, middle and C-terminal (HsOrc6-N, HsOrc6-M and HsOrc6-C). We also identified a distinct DNA-binding domain of human Orc6, named as HsOrc6-DBD. The detailed analysis of the structure revealed novel amino acid clusters important for the interaction with DNA. Alterations of these amino acids abolish DNA-binding ability of Orc6 and result in reduced levels of DNA replication. We propose that Orc6 is a DNA-binding subunit of human/metazoan ORC and may play roles in targeting, positioning and assembling the functional ORC at the origins.


Assuntos
Replicação do DNA , DNA/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação , Humanos , Ligação Proteica , Domínios Proteicos
5.
J Clin Pharm Ther ; 47(6): 732-737, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34974631

RESUMO

WHAT IS KNOWN AND OBJECTIVE: First-line and second-line immunotherapy with programmed death-1 (PD-1) inhibitors both improve overall survival in patients with advanced oesophageal squamous cell cancer (ESCC). This study explored survival differences between first-line and second-line PD-1 inhibition in advanced ESCC. METHODS: This registry study included 167 patients with advanced ESCC who were exposed to PD-1 inhibitors in either a first-line or a second-line setting between 15 January 2019 and 31 October 2020. The primary endpoint was overall survival, and secondary endpoints included overall tumour response, progression-free survival (PFS) and PFS2. A propensity score-matching (PSM) analysis was performed using the nearest-neighbour method. RESULTS AND DISCUSSION: Sixty-one patients started first-line treatment with chemotherapy and a PD-1 inhibitor (Group 1), while 106 started chemotherapy as the first-line choice and received a PD-1 inhibitor as the second-line choice (Group 2). The median PFS was 7.1 months in Group 1 and 4.1 months in Group 2 (log-rank p = 0.001). The median PFS2 was 7.1 months in Group 1 and 7.4 months in Group 2 (log-rank p = 0.4). Before PSM, the median overall survival was 13.5 months in Group 1 and 14.1 months in Group 2 (log-rank p = 0.9), and the sensitivity analysis showed consistent results (14.0 vs. 14.1 months). After PSM, the median overall survival rates for Group 1 (n = 61) and Group 2 (n = 61) were 13.5 and 13.1 months (log-rank p = 0.7) respectively. WHAT IS NEW AND CONCLUSION: In this study, patients with advanced ESCC who received first-line or second-line PD-1 inhibitors seemed to have comparable overall survival.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias Pulmonares , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/etiologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Receptor de Morte Celular Programada 1 , Estudos Prospectivos , Sistema de Registros
6.
Plant Cell Physiol ; 62(1): 205-218, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33340324

RESUMO

Little has been established on the relationship between the mevalonate (MVA) pathway and other metabolic pathways except for the sterol and glucosinolate biosynthesis pathways. In the MVA pathway, 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) catalyzes the condensation of acetoacetyl-CoA and acetyl-CoA to form 3-hydroxy-3-methylglutaryl-coenzyme A. Our previous studies had shown that, while the recombinant Brassica juncea HMGS1 (BjHMGS1) mutant S359A displayed 10-fold higher enzyme activity than wild-type (wt) BjHMGS1, transgenic tobacco overexpressing S359A (OE-S359A) exhibited higher sterol content, growth rate and seed yield than OE-wtBjHMGS1. Herein, untargeted proteomics and targeted metabolomics were employed to understand the phenotypic effects of HMGS overexpression in tobacco by examining which other metabolic pathways were affected. Sequential window acquisition of all theoretical mass spectra quantitative proteomics analysis on OE-wtBjHMGS1 and OE-S359A identified the misregulation of proteins in primary metabolism and cell wall modification, while some proteins related to photosynthesis and the tricarboxylic acid cycle were upregulated in OE-S359A. Metabolomic analysis indicated corresponding changes in carbohydrate, amino acid and fatty acid contents in HMGS-OEs, and F-244, a specific inhibitor of HMGS, was applied successfully on tobacco to confirm these observations. Finally, the crystal structure of acetyl-CoA-liganded S359A revealed that improved activity of S359A likely resulted from a loss in hydrogen bonding between Ser359 and acyl-CoA, which is evident in wtBjHMGS1. This work suggests that regulation of plant growth by HMGS can influence the central metabolic pathways. Furthermore, this study demonstrates that the application of the HMGS-specific inhibitor (F-244) in tobacco represents an effective approach for studying the HMGS/MVA pathway.


Assuntos
Hidroximetilglutaril-CoA Sintase/metabolismo , Redes e Vias Metabólicas , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Dimetil Sulfóxido/farmacologia , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ligação de Hidrogênio , Hidroximetilglutaril-CoA Sintase/antagonistas & inibidores , Hidroximetilglutaril-CoA Sintase/química , Lactonas/farmacologia , Espectrometria de Massas , Redes e Vias Metabólicas/efeitos dos fármacos , Estrutura Terciária de Proteína , Nicotiana/enzimologia
7.
Bioorg Med Chem ; 29: 115902, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33302045

RESUMO

ß-lactam antibiotics have long been the mainstay for the treatment of bacterial infections. New Delhi metallo-ß-lactamase 1 (NDM-1) is able to hydrolyze nearly all ß-lactam antibiotics and even clinically used serine-ß-lactamase inhibitors. The wide and rapid spreading of NDM-1 gene among pathogenic bacteria has attracted extensive attention, therefore high potency NDM-1 inhibitors are urgently needed. Here we report a series of structure-guided design of D-captopril derivatives that can inhibit the activity of NDM-1 in vitro and at cellular levels. Structural comparison indicates the mechanisms of inhibition enhancement and provides insights for further inhibitor optimization.


Assuntos
Antibacterianos/química , Captopril/química , Inibidores de beta-Lactamases/química , beta-Lactamases/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Sítios de Ligação , Captopril/metabolismo , Captopril/farmacologia , Cristalografia por Raios X , Descoberta de Drogas , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Humanos , Hidrólise/efeitos dos fármacos , Modelos Moleculares , Ligação Proteica , Relação Estrutura-Atividade , Compostos de Sulfidrila/química , Inibidores de beta-Lactamases/metabolismo , Inibidores de beta-Lactamases/farmacologia
8.
Biochem J ; 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258922

RESUMO

The APPL (adaptor proteins containing pleckstrin homology domain, phosphotyrosine binding domain and a leucine zipper motif) family consists of two isoforms, APPL1 and APPL2. By binding to curved plasma membrane, these adaptor proteins associate with multiple transmembrane receptors and recruit various downstream signaling components. They are involved in the regulation of signaling pathways evoked by a variety of extracellular stimuli, such as adiponectin, insulin, FSH (follicle stimulating hormone), EGF (epidermal growth factor). And they play important roles in cell proliferation, apoptosis, glucose uptake, insulin secretion and sensitivity. However, emerging evidence suggests that APPL1 and APPL2 perform different or even opposite functions and the underlying mechanism remains unclear. As APPL proteins can either homodimerize or heterodimerize in vivo, we hypothesized that heterodimerization of APPL proteins might account for the mechanism. By solving the crystal structure of APPL1-APPL2 BAR-PH heterodimer, we find that the overall structure is crescent-shaped with a longer curvature radius of 76 Å, compared to 55 Å of the APPL1 BAR-PH homodimer. However, there is no significant difference of the curvature between APPL BAR-PH heterodimer and APPL2 homodimer. The data suggest that the APPL1 BAR-PH homodimer, APPL2 BAR-PH homodimer and APPL1/APPL2 BAR-PH heterodimer may bind to endosomes of different sizes.   Different positive charge distribution is observed on the concave surface of APPL BAR-PH heterodimer than the homodimers, which may change the affinity of membrane association and subcellular localization. Collectively, APPL2 may regulate APPL1 function through altering the preference of endosome binding by heterodimerization.

9.
Proc Natl Acad Sci U S A ; 115(10): 2365-2370, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463709

RESUMO

Lysine succinylation is a newly discovered posttranslational modification with distinctive physical properties. However, to date rarely have studies reported effectors capable of interpreting this modification on histones. Following our previous study of SIRT5 as an eraser of succinyl-lysine (Ksuc), here we identified the GAS41 YEATS domain as a reader of Ksuc on histones. Biochemical studies showed that the GAS41 YEATS domain presents significant binding affinity toward H3K122suc upon a protonated histidine residue. Furthermore, cellular studies showed that GAS41 had prominent interaction with H3K122suc on histones and also demonstrated the coenrichment of GAS41 and H3K122suc on the p21 promoter. To investigate the binding mechanism, we solved the crystal structure of the YEATS domain of Yaf9, the GAS41 homolog, in complex with an H3K122suc peptide that demonstrated the presence of a salt bridge formed when a protonated histidine residue (His39) recognizes the carboxyl terminal of the succinyl group. We also solved the apo structure of GAS41 YEATS domain, in which the conserved His43 residue superimposes well with His39 in the Yaf9 structure. Our findings identified a reader of succinyl-lysine, and the binding mechanism will provide insight into the development of specific regulators targeting GAS41.


Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Ácido Succínico , Fatores de Transcrição , Cristalografia , Células HeLa , Histidina/química , Histidina/metabolismo , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ácido Succínico/química , Ácido Succínico/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
10.
J Am Chem Soc ; 142(42): 18150-18159, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32991157

RESUMO

Mimicking nature's ability to orchestrate molecular self-assembly in living cells is important yet challenging. Molecular self-assembly has found wide applications in cellular activity control, drug delivery, biomarker imaging, etc. Nonetheless, examples of suborganelle-confined supramolecular self-assembly are quite rare and research in this area remains challenging. Herein, we have presented a new strategy to program supramolecular self-assembly specifically in mitochondria by leveraging on a unique enzyme SIRT5. SIRT5 is a mitochondria-localized enzyme belonging to a family of NAD+-dependent histone deacetylases. Accumulating studies suggest that SIRT5 is involved in regulating diverse biological processes, such as reactive oxygen defense, fatty acid metabolism, and apoptosis. In this study, we designed a novel class of succinylated peptide precursors that can be transformed into self-assembling building blocks through SIRT5 catalysis, leading to the formation of supramolecular nanofibers in vitro and in living cells. The increased hydrophobicity arising from self-assembly remarkably enhanced the fluorescence of nitrobenzoxadiazole (NBD) in the nanofibers. With this approach, we have enabled activity-based imaging of SIRT5 in living cells for the first time. Moreover, SIRT5-mediated peptide self-assembly was found to depolarize mitochondria membrane potential and promote ROS formation. Coincubation of the peptide with three different chemotherapeutic agents significantly boosted the anticancer activities of these drugs. Our work has thus illustrated a new way of mitochondria-confined peptide self-assembly for SIRT5 imaging and potential anticancer treatment.


Assuntos
Mitocôndrias/metabolismo , Peptídeos/metabolismo , Sirtuínas/metabolismo , Biocatálise , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Imagem Óptica , Peptídeos/síntese química , Peptídeos/química , Conformação Proteica
11.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(6): 626-631, 2020 Jun.
Artigo em Zh | MEDLINE | ID: mdl-32571463

RESUMO

OBJECTIVE: To study the significance of the level of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) in serum and bronchoalveolar lavage fluid (BALF), Acute Physiology and Chronic Health Evaluation II (APACHE II) score, and Sequential Organ Failure Assessment (SOFA) score in evaluating the conditions and prognosis of children with severe pneumonia. METHODS: A total of 76 children with severe pneumonia who were admitted from August 2017 to October 2019 were enrolled as the severe pneumonia group. According to the treatment outcome, they were divided into a non-response group with 34 children and a response group with 42 children. Ninety-four children with common pneumonia who were admitted during the same period of time were enrolled as the common pneumonia group. One hundred healthy children who underwent physical examination in the outpatient service during the same period of time were enrolled as the control group. The serum level of sTREM-1, APACHE II score, and SOFA score were measured for each group, and the level of sTREM-1 in BALF was measured for children with severe pneumonia. The correlation of the above indices with the severity and prognosis of severe pneumonia in children was analyzed. RESULTS: The severe pneumonia group had significantly higher serum sTREM-1 level, APACHEII score, and SOFA score than the common pneumonia group and the control group (P<0.05). For the children with severe pneumonia, the non-response group had significant increases in the levels of sTREM-1 in serum and BALF and SOFA score on day 7 after admission, while the response group had significant reductions in these indices, and there were significant differences between the two groups (P<0.05). Positive correlation was found between any two of serum sTREM-1, BALF sTREM-1, and SOFA score (P<0.05). APACHE II score was not correlated with serum sTREM-1, BALF sTREM-1, and SOFA score (P>0.05). CONCLUSIONS: The level of sTREM-1 in serum and BALF and SOFA score can be used to evaluate the severity and prognosis of severe pneumonia in children.


Assuntos
Pneumonia , Sepse , APACHE , Líquido da Lavagem Broncoalveolar , Criança , Humanos , Escores de Disfunção Orgânica , Prognóstico , Curva ROC , Receptor Gatilho 1 Expresso em Células Mieloides
12.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30670555

RESUMO

Talaromyces marneffei infection causes talaromycosis (previously known as penicilliosis), a very important opportunistic systematic mycosis in immunocompromised patients. Different virulence mechanisms in T. marneffei have been proposed and investigated. In the sera of patients with talaromycosis, Mp1 protein (Mp1p), a secretory galactomannoprotein antigen with two tandem ligand-binding domains (Mp1p-LBD1 and Mp1p-LBD2), was found to be abundant. Mp1p-LBD2 was reported to possess a hydrophobic cavity to bind copurified palmitic acid (PLM). It was hypothesized that capturing of lipids from human hosts by expressing a large quantity of Mp1p is a virulence mechanism of T. marneffei It was shown that expression of Mp1p enhanced the intracellular survival of T. marneffei by suppressing proinflammatory responses. Mechanistic study of Mp1p-LBD2 suggested that arachidonic acid (AA), a precursor of paracrine signaling molecules for regulation of inflammatory responses, is the major physiological target of Mp1p-LBD2. In this study, we use crystallographic and biochemical techniques to further demonstrate that Mp1p-LBD1, the previously unsolved first lipid binding domain of Mp1p, is also a strong AA-binding domain in Mp1p. These studies on Mp1p-LBD1 support the idea that the highly expressed Mp1p is an effective AA-capturing protein. Each Mp1p can bind up to 4 AA molecules. The crystal structure of Mp1p-LBD1-LBD2 has also been solved, showing that both LBDs are likely to function independently with a flexible linker between them. T. marneffei and potentially other pathogens highly expressing and secreting proteins similar to Mp1p can severely disturb host signaling cascades during proinflammatory responses by reducing the availabilities of important paracrine signaling molecules.


Assuntos
Ácido Araquidônico/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Micoses/microbiologia , Talaromyces/metabolismo , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Ácido Araquidônico/química , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Humanos , Espectrometria de Massas , Micoses/genética , Micoses/imunologia , Domínios Proteicos , Talaromyces/química , Talaromyces/genética , Fatores de Virulência/genética
13.
J Am Chem Soc ; 141(46): 18428-18436, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31644285

RESUMO

Lysine lipoylation, a highly conserved lysine post-translational modification, plays a critical role in regulating cell metabolism. The catalytic activity of a number of vital metabolic proteins, such as pyruvate dehydrogenase (PDH), depends on lysine lipoylation. Despite its important roles, the detailed biological regulatory mechanism of lysine lipoylation remains largely unexplored. Herein we designed a powerful affinity-based probe, KPlip, to interrogate the interactions of lipoylated peptide/proteins under native cellular environment. Large-scale chemical proteomics analysis revealed a number of binding proteins of KPlip, including sirtuin 2 (Sirt2), an NAD+-dependent protein deacylase. To explore the potential activity of Sirt2 toward lysine lipoylation, we designed a single-step fluorogenic probe, KTlip, which reports delipoylation activity in a continuous manner. The results showed that Sirt2 led to significant delipoylation of KTlip, displaying up to a 60-fold fluorescence increase in the assay. Further kinetic experiments with different peptide substrates revealed that Sirt2 can catalyze the delipoylation of peptide (DLAT-PDH, K259) with a remarkable catalytic efficiency (kcat/Km) of 3.26 × 103 s-1 M-1. The activity is about 400-fold higher than that of Sirt4, the only mammalian enzyme with known delipoylation activity. Furthermore, overexpression and silencing experiments demonstrated that Sirt2 regulates the lipoylation level and the activity of endogenous PDH, thus unequivocally confirming that PDH is a genuine physiological substrate of Sirt2. Using our chemical probes, we have successfully established the relationship between Sirt2 and lysine lipoylation in living cells for the first time. We envision that such chemical probes will serve as useful tools for delineating the roles of lysine lipoylation in biology and diseases.


Assuntos
Lipoilação , Lisina/metabolismo , Sirtuína 2/metabolismo , Células HEK293 , Humanos , Peptídeos/metabolismo , Ligação Proteica , Proteômica/métodos
14.
Nature ; 496(7443): 110-3, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23552949

RESUMO

The Sir2 family of enzymes or sirtuins are known as nicotinamide adenine dinucleotide (NAD)-dependent deacetylases and have been implicated in the regulation of transcription, genome stability, metabolism and lifespan. However, four of the seven mammalian sirtuins have very weak deacetylase activity in vitro. Here we show that human SIRT6 efficiently removes long-chain fatty acyl groups, such as myristoyl, from lysine residues. The crystal structure of SIRT6 reveals a large hydrophobic pocket that can accommodate long-chain fatty acyl groups. We demonstrate further that SIRT6 promotes the secretion of tumour necrosis factor-α (TNF-α) by removing the fatty acyl modification on K19 and K20 of TNF-α. Protein lysine fatty acylation has been known to occur in mammalian cells, but the function and regulatory mechanisms of this modification were unknown. Our data indicate that protein lysine fatty acylation is a novel mechanism that regulates protein secretion. The discovery of SIRT6 as an enzyme that controls protein lysine fatty acylation provides new opportunities to investigate the physiological function of a protein post-translational modification that has been little studied until now.


Assuntos
Ácidos Graxos/química , Ácidos Graxos/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Sirtuínas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Acilação , Sítios de Ligação , Cristalografia por Raios X , Humanos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Lisina/química , Processamento de Proteína Pós-Traducional , Sirtuínas/química , Fator de Necrose Tumoral alfa/química
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 21(6): 499-504, 2019 Jun.
Artigo em Zh | MEDLINE | ID: mdl-31208499

RESUMO

OBJECTIVE: To explore the intervention measures to maintain clinical control in children with asthma in the remission stage when concomitant with acute upper respiratory infection (AURI). METHODS: A total of 100 asthmatic children who had achieved clinical control were randomly divided into observation group and control group. The two groups were both treated with a combination of inhaled corticosteroids and long-acting ß2 receptor agonist (ICS/LABA) at the lowest dose every night. Conventional therapies were used for the two groups when suffering from AURI. In addition to conventional therapies, the observation group was given early short-term upgrade therapy, i.e., on the basis of maintenance therapy, the same amount of ICS/LABA complex preparation was inhaled every morning, which lasted for 7-10 days. Both groups were treated following asthma guidelines according to the severity of the disease at the time of acute attacks. The control rate of asthma, severity of acute attacks, changes in pulmonary function indices, and occurrence of adverse events were evaluated after 3, 6, 9, and 12 months of treatment. RESULTS: At each time point of follow-up, the rate of asthma control in the observation group was significantly higher than that in the control group (90% vs 80%; P<0.05). The severity of acute attacks in the observation group was significantly lower than that in the control group at all follow-up time points (P<0.05). Compared with the control group, the observation group had significantly improved pulmonary function indices of large and small airways (P<0.05) and significantly reduced mean amount of inhaled glucocorticoids and impact on family life (P<0.01). CONCLUSIONS: Early short-term upgrade therapy for children with asthma in the remission stage when concomitant with AURI can prevent acute attacks of asthma, raise the rate of asthma control and improve pulmonary function.


Assuntos
Asma , Administração por Inalação , Corticosteroides , Agonistas Adrenérgicos beta , Antiasmáticos , Criança , Quimioterapia Combinada , Humanos
16.
Artigo em Inglês | MEDLINE | ID: mdl-30150473

RESUMO

ß-Lactam antibiotics are the mainstay for the treatment of bacterial infections. However, elevated resistance to these antibiotics mediated by metallo-ß-lactamases (MBLs) has become a global concern. New Delhi metallo-ß-lactamase-1 (NDM-1), a newly added member of the MBL family that can hydrolyze almost all ß-lactam antibiotics, has rapidly spread all over the world and poses serious clinical threats. Broad-spectrum and mechanism-based inhibitors against all MBLs are highly desired, but the differential mechanisms of MBLs toward different antibiotics pose a great challenge. To facilitate the design of mechanism-based inhibitors, we investigated the active-site conformational changes of NDM-1 through the determination of a series of 15 high-resolution crystal structures in native form and in complex with products and by using biochemical and biophysical studies, site-directed mutagenesis, and molecular dynamics computation. The structural studies reveal the consistency of the active-site conformations in NDM-1/product complexes and the fluctuation in native NDM-1 structures. The enzymatic measurements indicate a correlation between enzymatic activity and the active-site fluctuation, with more fluctuation favoring higher activity. This correlation is further validated by structural and enzymatic studies of the Q123G mutant. Our combinational studies suggest that active-site conformational fluctuation promotes the enzymatic activity of NDM-1, which may guide further mechanism studies and inhibitor design.


Assuntos
beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Domínio Catalítico/efeitos dos fármacos , Escherichia coli/metabolismo , Humanos , Conformação Proteica/efeitos dos fármacos
17.
Med Mycol ; 56(3): 350-360, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992243

RESUMO

Recently, we showed that Mp1p is an important virulence factor of Talaromyces marneffei, a dimorphic fungus phylogenetically closely related to Aspergillus fumigatus. In this study, we investigated the virulence properties of the four Mp1p homologues (Afmp1p, Afmp2p, Afmp3p, and Afmp4p) in A. fumigatus using a mouse model. All mice died 7 days after challenge with wild-type A. fumigatus QC5096, AFMP1 knockdown mutant, AFMP2 knockdown mutant and AFMP3 knockdown mutant and 28 days after challenge with AFMP4 knockdown mutant (P<.0001). Only 11% of mice died 30 days after challenge with AFMP1-4 knockdown mutant (P<.0001). For mice challenge with AFMP1-4 knockdown mutant, lower abundance of fungal elements was observed in brains, kidneys, and spleens compared to mice challenge with QC5096 at day 4 post-infection. Fungal counts in brains of mice challenge with QC5096 or AFMP4 knockdown mutant were significantly higher than those challenge with AFMP1-4 knockdown mutant (P<.01 and P<.05). Fungal counts in kidneys of mice challenge with QC5096 or AFMP4 knockdown mutant were significantly higher than those challenge with AFMP1-4 knockdown mutant (P<.001 and P<.001) and those of mice challenge with QC5096 were significantly higher than those challenge with AFMP4 knockdown mutant (P<.05). There is no difference among the survival rates of wild-type A. fumigatus, AFMP4 knockdown mutant and AFMP1-4 knockdown mutant, suggesting that Mp1p homologues in A. fumigatus do not mediate its virulence via improving its survival in macrophage as in the case in T. marneffei. Afmp1p, Afmp2p, Afmp3p, and Afmp4p in combination are important virulence factors of A. fumigatus.


Assuntos
Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas , Micoses/microbiologia , Fatores de Virulência/genética , Animais , Antígenos de Fungos/genética , Antígenos de Fungos/metabolismo , Aspergillus fumigatus/classificação , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Encéfalo/microbiologia , Encéfalo/patologia , Linhagem Celular , Contagem de Colônia Microbiana , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas de Silenciamento de Genes , Rim/microbiologia , Rim/patologia , Macrófagos/microbiologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Micoses/mortalidade , Micoses/patologia , Baço/microbiologia , Baço/patologia , Taxa de Sobrevida
18.
Int J Gynecol Pathol ; 37(4): 388-396, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28796747

RESUMO

Endometrial clear cell carcinoma (ECCC) and clear cell adenocarcinoma of the cervix (CCAC) are uncommon gynecologic cancers that have morphologic and phenotypic features similar to ovarian clear cell carcinoma (OCCC), but the 3 entities may not be completely identical. This study identified the morphologic and phenotypic characteristics and the differences between ECCC and CCAC in comparison to OCCC. The morphologic features of 16 ECCCs, 7 CCACs, and 22 OCCCs are described. The immunoprofiles of hepatocyte nuclear factor (HNF) 1ß, napsin A, estrogen, progesterone, p53, and Ki-67 were assessed. The results confirm that clear cell carcinomas of the gynecologic tract have a similar spectrum of histopathologic features with the exception that ECCCs have focal solid components more often than CCACs and OCCCs and ECCCs have a slightly higher average mitotic index. Similar to OCCCs, both ECCCs and CCACs were positive for HNF1ß and napsin A, and rarely expressed estrogen and progesterone. HNF1ß was a sensitive marker for clear cell carcinoma at all 3 sites. Napsin A was less sensitive in ECCCs than in OCCCs (56.3% vs. 90.9%, P=0.021). The average Ki-67 index was higher in ECCCs than in OCCCs (52.6% vs. 39.1%) in hotspot scoring, and more ECCC cases had a higher expression (56.3% vs. 22.7%). Diffuse p53 expression, which is associated with TP53 mutation, was observed slightly more often in ECCCs than in OCCCs (25% vs. 9.1%). Our findings revealed morphologic and immunophenotypic similarities and differences among different gynecologic clear cell carcinomas, which may help in improving diagnosis and knowledge of CCC in the female genital tract.


Assuntos
Adenocarcinoma de Células Claras/diagnóstico , Biomarcadores Tumorais/análise , Neoplasias do Endométrio/diagnóstico , Neoplasias Ovarianas/diagnóstico , Neoplasias do Colo do Útero/diagnóstico , Adenocarcinoma de Células Claras/patologia , Adulto , Idoso , Neoplasias do Endométrio/patologia , Feminino , Humanos , Imunofenotipagem , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Neoplasias do Colo do Útero/patologia
19.
J Am Chem Soc ; 138(48): 15596-15604, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27805808

RESUMO

Histone deacetylases (HDACs) play important roles in regulating various physiological and pathological processes. Developing fluorescent probes capable of detecting HDAC activity can help further elucidate the roles of HDACs in biology. In this study, we first developed a set of activity-based fluorescent probes by incorporating the Kac residue and the O-NBD group. Upon enzymatic removal of the acetyl group in the Kac residue, the released free amine reacted intramolecularly with the O-NBD moiety, resulting in turn-on fluorescence. These designed probes are capable of detecting HDAC activity in a continuous fashion, thereby eliminating the extra step of fluorescence development. Remarkably, the amount of turn-on fluorescence can be as high as 50-fold, which is superior to the existing one-step HDAC fluorescent probes. Inhibition experiments further proved that the probes can serve as useful tools for screening HDAC inhibitors. Building on these results, we moved on and designed a dual-purpose fluorescent probe by introducing a diazirine photo-cross-linker into the probe. The resulting probe was not only capable of reporting enzymatic activity but also able to directly identify and capture the protein targets from the complex cellular environment. By combining a fluorometric method and in-gel fluorescence scanning technique, we found that epigenetic readers and erasers can be readily identified and differentiated using a single probe. This is not achievable with traditional photoaffinity probes. In light of the prominent properties and the diverse functions of this newly developed probe, we envision that it can provide a robust tool for functional analysis of HDACs and facilitate future drug discovery in epigenetics.


Assuntos
Corantes Fluorescentes/química , Histona Desacetilases/análise , Proteômica , Corantes Fluorescentes/síntese química , Histona Desacetilases/metabolismo , Humanos , Estrutura Molecular
20.
Tumour Biol ; 37(1): 239-51, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26198045

RESUMO

MicroRNAs (miRNAs) are a class of noncoding RNAs and function as key regulators of gene expression at the post-transcriptional level. In this study, we found that miR-495 reduces cell growth, induces apoptosis and suppresses the migration of endometrial cancer by directly inhibiting FOXC1 expression. Further analysis revealed that FOXC1 promotes growth and migration and functions as an oncogene in vitro. FOXC1 overexpression reversed the cellular responses mediated by miR-495 in endometrial cancer cells. We also found that miR-495 suppresses the growth of endometrial cancer in vivo. Altogether, these results indicate that miR-495 acts as a tumour suppressor gene by targeting FOXC1 at the post-transcriptional level in endometrial cancer.


Assuntos
Neoplasias do Endométrio/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Oncogenes , Proteínas Supressoras de Tumor/metabolismo , Regiões 3' não Traduzidas , Animais , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Regulação para Baixo , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA