RESUMO
Recent years have witnessed the rapid development of sustainable materials. Along this line, developing biodegradable or recyclable soft electronics is challenging yet important due to their versatile applications in biomedical devices, soft robots, and wearables. Although some degradable bulk hydrogels are directly used as the soft electronics, the sensing performances are usually limited due to the absence of distributed conducting circuits. Here, sustainable hydrogel-based soft electronics (HSE) are reported that integrate sensing elements and patterned liquid metal (LM) in the gelatin-alginate hybrid hydrogel. The biopolymer hydrogel is transparent, robust, resilient, and recyclable. The HSE is multifunctional; it can sense strain, temperature, heart rate (electrocardiogram), and pH. The strain sensing is sufficiently sensitive to detect a human pulse. In addition, the device serves as a model system for iontophoretic drug delivery by using patterned LM as the soft conductor and electrode. Noncontact detection of nearby objects is also achieved based on electrostatic-field-induced voltage. The LM and biopolymer hydrogel are healable, recyclable, and degradable, favoring sustainable applications and reconstruction of the device with new functions. Such HSE with multiple functions and favorable attributes should open opportunities in next-generation electronic skins and hydrogel machines.
Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Alginatos , Biopolímeros , Eletrônica , HumanosRESUMO
Fluorescent hydrogels have attracted tremendous attention recently in the field of information security due to the booming development of information technology. Along this line, it is highly desired to improve the security level of concealed information by the advancements of materials and encryption technologies. Here we report multi-level encryption of information in a bilayer hydrogel with shape-morphing ability and patterned fluorescence. This hydrogel is composed of a fluorescence layer containing chromophore units in the poly(acrylic acid) network and an active layer with UV-absorption agents in the poly(N-isopropylacrylamide-co-acrylic acid) network. The former layer exhibits tunable fluorescence tailored by UV light irradiation to induce unimer-to-dimer transformation of the chromophores, facilitating the write-in of information through photolithography. The latter layer is responsive to temperature, enabling morphing of the bilayer hydrogel. Therefore, the bilayer hydrogel encoded with patterned fluorescent patterns can deform into three-dimensional configurations at room temperature to conceal the information, which is readable only after successive procedures of shape recovery at an appropriate temperature and under UV light irradiation from the right direction. The combination of morphing materials and patterned fluorescence as a new avenue to improve the encryption level of information should merit the design of other smart materials with integrated functions for specific applications.
RESUMO
A simple and effective approach is demonstrated to fabricate tough metallosupramolecular hydrogel films of poly(acrylic acid) by one-pot photopolymerization of the precursor solution in the presence of Zr4+ ions that form coordination complexes with the carboxyl groups and serve as the physical crosslinks of the matrix. Both as-prepared and equilibrated hydrogel films are transparent, tough, and stable over a wide range of temperature, ionic strength, and pH. The thickness of the films can be easily tailored with minimum value of ≈7 µm. Owing to the fast polymerization and gelation process, kirigami structures can be facilely encoded to the gel films by photolithographic polymerization, affording versatile functions such as additional stretchability and better compliance of the planar films to encapsulate objects with sophisticated geometries that are important for the design of soft electronics. By stencil printing of liquid metal on the hydrogel film with a kirigami structure, the integrated soft electronics shows good compliance to cover curved surfaces and high sensitivity to monitor human motions. Furthermore, this strategy is applied to diverse natural and synthetic macromolecules containing carboxyl groups to develop tough hydrogel films, which will open opportunities for the applications of hydrogel films in biomedical and engineering fields.
Assuntos
Hidrogéis , Metilgalactosídeos , Eletrônica , Humanos , Impressão TridimensionalRESUMO
Joints, as a flexing element to connect different parts, are widespread in natural systems. Various joints exist in the body and play crucial roles to execute gestures and gaits. These scenarios have inspired the design of mechanical joints with passive, hard materials, which usually need an external power supply to drive the transformations. The incorporation of soft and active joints provides a modular strategy to devise soft actuators and robots. However, transformations of responsive joints under external stimuli are usually in uni-mode with a pre-determined direction. Here, hydrogel joints capable of folding and twisting transformation in bi-mode are reported, which enable the composite hydrogel to form multiple configurations under constant conditions. These joints have an in-plane gradient structure and comprise stiff, passive gel as the frame and soft, active gel as the actuating unit. Under external stimuli, the response mismatch between different gels leads to out-of-plane folding or twisting deformation with the feature of bistability. These joints can be modularly integrated with other gels to afford complex deformations and multistable configurations. This approach favors selective control of hydrogel's architectures and versatile design of hydrogel devices, as demonstrated by proof-of-concept examples. It shall also merit the development of metamaterials, soft actuators, and robots, etc.
RESUMO
Viscoelasticity is a generic characteristic of soft biotissues and polymeric materials, endowing them with unique time- and rate-dependent properties. Here, by spatiotemporally tailoring the viscoelasticity in tough supramolecular hydrogels, we demonstrate reprogrammable morphing of the gels based on differential viscoelastic recovery processes that lead to internal strain mismatch. The spatial heterogeneity of viscoelasticity is encoded through integrating dissimilar hydrogels or by site-specific treatment of a singular hydrogel. The temporal morphing behavior of tough gels, including a fast deformation process and then a slow shape-recovery process, is related to the kinetics of associative interactions and the entropic elasticity of supramolecular networks after pre-stretching and release, which takes place spontaneously in the absence of external stimuli. Such a kinetically driven morphing mechanism resolves the trade-off between the mechanical robustness and shape-changing speed in tough hydrogels with dense entanglements and physical associations, and should be applicable to other viscoelastic materials. A numerical theory for the temporal morphing of tough supramolecular gels has been formulated by dynamic coupling of viscoelastic recovery and mechanics of deformations, which is further implemented to predict the sophisticated morphed structures. Furthermore, magnetic particles are incorporated into the morphed tough hydrogels to devise versatile soft actuators and robots for specific applications.
RESUMO
Most hydrogels become frozen at subzero temperatures, leading to degraded properties and limited applications. Cryoprotectants are massively employed to improve anti-freezing property of hydrogels; however, there are accompanied disadvantages, such as varied networks, reduced mechanical properties, and the risk of cryoprotectant leakage in aqueous conditions. Reported here is the glassy hydrogel having intrinsic anti-freezing capacity and excellent optical and mechanical properties at ultra-low temperatures. Supramolecular hydrogel of poly(acrylamide-co-methacrylic acid) with moderate water content (≈50 wt.%) and dense hydrogen-bond associations is in a glassy state at room temperature. Since hydrogen bonds become strengthened as the temperature decreases, this gel becomes stronger and stiffer, yet still ductile, with Young's modulus of 900 MPa, tensile strength of 30 MPa, and breaking strain of 35% at -45 °C. This gel retains high transparency even in liquid nitrogen. It also exhibits unique phosphorescence due to presence of carbonyl clusters, which is further enhanced at subzero temperatures. Further investigations elucidate that the intrinsic anti-freezing property is related to a fact that most water molecules are tightly bound and confined in the glassy matrix and become non-freezable. This correlation, as validated in several systems, provides a roadmap to develop intrinsic anti-freezing hydrogels for widespread applications at extreme conditions.
RESUMO
Venus flytrap and bladderwort, capable of rapid predation through a snapping transition, have inspired various designs of soft actuators and robots with fast actions. These designs, in contrast to their natural counterparts, often require a direct force or pressurization. Here, we report a bistable domal hydrogel structure capable of spontaneous and reversible snapping under an electric field. Unlike a mechanical force, the electric field does not drive the gel directly. Instead, it redistributes mobile ions that direct the migration of water molecules and bends the polyelectrolyte hydrogel. Subject to constraint from surrounding neutral gel, the elastic energy accumulates until suddenly released by snapping, just like the process in natural organisms. Several proof-of-concept examples, including an optical switch, a speedy catcher, and a pulse pump, are designed to demonstrate the versatile functionalities of this unit capable of articulate motion. This work should bring opportunities to devise soft robotics, biomedical devices, etc.
RESUMO
Processing tough hydrogels into sophisticated architectures is crucial for their applications as structural elements. However, Digital Light Processing (DLP) printing of tough hydrogels is challenging because of the low-speed gelation and toughening process. Described here is a simple yet versatile system suitable for DLP printing to form tough hydrogel architectures. The aqueous precursor consists of commercial photoinitiator, acrylic acid, and zirconium ion (Zr4+ ), readily forming tough metallo-supramolecular hydrogel under digital light because of in situ formation of carboxyl-Zr4+ coordination complexes. The high-stiffness and antiswelling properties of as-printed gel enable high-efficiency printing to form high-fidelity constructs. Furthermore, swelling-induced morphing of the gel is also achieved by encoding structure gradients during the printing with grayscale digital light. Mechanical properties of the printed hydrogels are further improved after incubation in water due to the variation of local pH and rearrangement of coordination complex. The swelling-enhanced stiffness affords the printed hydrogel with shape fixation ability after manual deformations, and thereby provides an additional avenue to form more complex configurations. These printed hydrogels are used to devise an impact-absorption element or a high-sensitivity pressure sensor as proof-of-concept examples. This work should merit engineering of other tough gels and extend their scope of applications in diverse fields.
RESUMO
The design of soft robots capable of navigation underwater has received tremendous research interest due to the robots' versatile applications in marine explorations. Inspired by marine animals such as jellyfish, scientists have developed various soft robotic fishes by using elastomers as the major material. However, elastomers have a hydrophobic network without embedded water, which is different from the gel-state body of the prototypes and results in high contrast to the surrounding environment and thus poor acoustic stealth. Here, we demonstrate a manta ray-inspired soft robot fish with tailored swimming motions by using tough and stiff hydrogels as the structural elements, as well as a dielectric elastomer as the actuating unit. The switching between actuated and relaxed states of this unit under wired power leads to the flapping of the pectoral fins and swimming of the gel fish. This robot fish has good stability and swims with a fast speed (â¼10 cm/s) in freshwater and seawater over a wide temperature range (4-50 °C). The high water content (i.e., â¼70 wt %) of the robot fish affords good optical and acoustic stealth properties under water. The excellent mechanical properties of the gels also enable easy integration of other functional units/systems with the robot fish. As proof-of-concept examples, a temperature sensing system and a soft gripper are assembled, allowing the robot fish to monitor the local temperature, raise warning signals by lighting, and grab and transport an object on demand. Such a robot fish should find applications in environmental detection and execution tasks under water. This work should also be informative for the design of other soft actuators and robots with tough hydrogels as the building blocks.
Assuntos
Robótica , Animais , Robótica/métodos , Hidrogéis , Elastômeros/química , Peixes , ÁguaRESUMO
Morphing materials have promising applications in soft robots, intelligent devices, and so forth. Among the various design strategies, kirigami structures are recognized as a powerful tool to obtain sophisticated 3D configurations and unprecedented properties from planar designs on common materials. Here, some kirigami designs are demonstrated for programmable, multistable 3D configurations from composite hydrogel sheets. Via photolithographic polymerization, perforated composite hydrogel sheets are fabricated, in which soft and active hydrogel strips are patterned in stiff and passive hydrogel frames. When immersed in water, the gel strips buckle out of plane due to swelling mismatch. In the kirigami structures, the geometric continuity is disrupted by the introduction of cutouts, and thus the degrees of deformation freedom increases remarkably. Multiple configurations are obtained in a single composite hydrogel by controlling the buckling direction of each strip. Multitier configurations are also obtained by using a hierarchically designed kirigami structure. A multicontact switch of an electric circuit is designed by harnessing the multitier gel configurations. Furthermore, a rotation mode is realized by introducing chirality in the kirigami design. The versatile design of the kirigami structure for programmable deformations should be applicable for other intelligent materials toward promising applications in biomedical devices and flexible electronics.
RESUMO
Programmed deformations are widespread in nature, providing elegant paradigms to design self-morphing materials with promising applications in biomedical devices, flexible electronics, soft robotics, etc. In this emerging field, hydrogels are an ideal material to investigate the deformation principle and the structure-deformation relationship. One crucial step is to construct heterogeneous structures in a facile yet effective way. Herein, we provide a focus review on different deformation modes and corresponding structural features of hydrogels. Photolithography is a versatile approach to control the outer shape of the hydrogel and spatial distribution of the component in the hydrogel, endowing the patterned hydrogels with programmed internal stress and thus controllable deformations. Specifically, cooperative deformations take place in periodically patterned hydrogels with in-plane gradients, and multiple morphing structures are formed in one patterned hydrogel using selective preswelling to direct the buckling of each unit. The structural control strategy and deformation principles should be applicable to other materials with broad applications in diverse areas.