RESUMO
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV nonstructural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign. Here, we optimized a CHIKV nsP2 protease (nsP2pro) biochemical assay for the screening of a 6,120-compound cysteine-directed covalent fragment library. Using a 50% inhibition threshold, we identified 153 hits (2.5% hit rate). In dose-response follow-up, RA-0002034, a covalent fragment that contains a vinyl sulfone warhead, inhibited CHIKV nsP2pro with an IC50 of 58 ± 17 nM, and further analysis with time-dependent inhibition studies yielded a kinact /KI of 6.4 × 103 M-1s-1. LC-MS/MS analysis determined that RA-0002034 covalently modified the catalytic cysteine in a site-specific manner. Additionally, RA-0002034 showed no significant off-target reactivity in proteomic experiments or against a panel of cysteine proteases. In addition to the potent biochemical inhibition of CHIKV nsP2pro activity and exceptional selectivity, RA-0002034 was tested in cellular models of alphavirus infection and effectively inhibited viral replication of both CHIKV and related alphaviruses. This study highlights the identification and characterization of the chemical probe RA-0002034 as a promising hit compound from covalent fragment-based screening for development toward a CHIKV or pan-alphavirus therapeutic.
Assuntos
Vírus Chikungunya , Cisteína Endopeptidases , Vírus Chikungunya/efeitos dos fármacos , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/química , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Humanos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Sulfonas/farmacologia , Sulfonas/química , Animais , Febre de Chikungunya/virologia , Febre de Chikungunya/tratamento farmacológicoRESUMO
The two phospholipase C-γ (PLC-γ) isozymes are major signaling hubs and emerging therapeutic targets for various diseases, yet there are no selective inhibitors for these enzymes. We have developed a high-throughput, liposome-based assay that features XY-69, a fluorogenic, membrane-associated reporter for mammalian PLC isozymes. The assay was validated using a pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) in 384-well format; it is highly reproducible and has the potential to capture both orthosteric and allosteric inhibitors. Selected hit compounds were confirmed with secondary assays, and further profiling led to the interesting discovery that adenosine triphosphate potently inhibits the PLC-γ isozymes through noncompetitive inhibition, raising the intriguing possibility of endogenous, nucleotide-dependent regulation of these phospholipases. These results highlight the merit of the assay platform for large scale screening of chemical libraries to identify allosteric modulators of the PLC-γ isozymes as chemical probes and for drug discovery.
Assuntos
Membrana Celular/enzimologia , Isoenzimas/química , Isoenzimas/metabolismo , Fosfolipase C gama/química , Fosfolipase C gama/metabolismo , Animais , Humanos , Transdução de Sinais/fisiologiaRESUMO
Chemical probes are an indispensable tool for translating biological discoveries into new therapies, though are increasingly difficult to identify since novel therapeutic targets are often hard-to-drug proteins. We introduce FRASE-based hit-finding robot (FRASE-bot), to expedite drug discovery for unconventional therapeutic targets. FRASE-bot mines available 3D structures of ligand-protein complexes to create a database of FRAgments in Structural Environments (FRASE). The FRASE database can be screened to identify structural environments similar to those in the target protein and seed the target structure with relevant ligand fragments. A neural network model is used to retain fragments with the highest likelihood of being native binders. The seeded fragments then inform ultra-large-scale virtual screening of commercially available compounds. We apply FRASE-bot to identify ligands for Calcium and Integrin Binding protein 1 (CIB1), a promising drug target implicated in triple negative breast cancer. FRASE-based virtual screening identifies a small-molecule CIB1 ligand (with binding confirmed in a TR-FRET assay) showing specific cell-killing activity in CIB1-dependent cancer cells, but not in CIB1-depletion-insensitive cells.
Assuntos
Antineoplásicos , Proteínas de Ligação ao Cálcio , Descoberta de Drogas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Ligantes , Descoberta de Drogas/métodos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Linhagem Celular Tumoral , Simulação por Computador , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ligação Proteica , Redes Neurais de ComputaçãoRESUMO
Mutations in the small GTPase protein KRAS are one of the leading drivers of cancers including lung, pancreatic, and colorectal, as well as a group of developmental disorders termed "Rasopathies". Recent breakthroughs in the development of mutant-specific KRAS inhibitors include the FDA approved drug Lumakras (Sotorasib, AMG510) for KRAS G12C-mutated non-small cell lung cancer (NSCLC), and MRTX1133, a promising clinical candidate for the treatment of KRAS G12D-mutated cancers. However, there are currently no FDA approved inhibitors that target KRAS mutations occurring at non-codon 12 positions. Herein, we focused on the KRAS mutant A146T, found in colorectal cancers, that exhibits a "fast-cycling" nucleotide mechanism as a driver for oncogenic activation. We developed a novel high throughput time-resolved fluorescence resonance energy transfer (TR-FRET) assay that leverages the reduced nucleotide affinity of KRAS A146T. As designed, the assay is capable of detecting small molecules that act to allosterically modulate GDP affinity or directly compete with the bound nucleotide. A pilot screen was completed to demonstrate robust statistics and reproducibility followed by a primary screen using a diversity library totaling over 83,000 compounds. Compounds yielding >50% inhibition of TR-FRET signal were selected as hits for testing in dose-response format. The most promising hit, UNC10104889, was further investigated through a structure activity relationship (SAR)-by-catalog approach in an attempt to improve potency and circumvent solubility liabilities. Overall, we present the TR-FRET platform as a robust assay to screen fast-cycling KRAS mutants enabling future discovery efforts for novel chemical probes and drug candidates.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Transferência Ressonante de Energia de Fluorescência , Proteínas Proto-Oncogênicas p21(ras)/genética , Reprodutibilidade dos Testes , NucleotídeosRESUMO
Chemical probes are an indispensable tool for translating biological discoveries into new therapies, though are increasingly difficult to identify. Novel therapeutic targets are often hard-to-drug proteins, such as messengers or transcription factors. Computational strategies arise as a promising solution to expedite drug discovery for unconventional therapeutic targets. FRASE-bot exploits big data and machine learning (ML) to distill 3D information relevant to the target protein from thousands of protein-ligand complexes to seed it with ligand fragments. The seeded fragments can then inform either (i) de novo design of 3D ligand structures or (ii) ultra-large-scale virtual screening of commercially available compounds. Here, FRASE-bot was applied to identify ligands for Calcium and Integrin Binding protein 1 (CIB1), a promising but ligand-orphan drug target implicated in triple negative breast cancer. The signaling function of CIB1 relies on protein-protein interactions and its structure does not feature any natural ligand-binding pocket. FRASE-based virtual screening identified the first small-molecule CIB1 ligand (with binding confirmed in a TR-FRET assay) showing specific cell-killing activity in CIB1-dependent cancer cells, but not in CIB1-depleted cells.
RESUMO
Methyl-lysine reader p53 binding protein 1 (53BP1) is a central mediator of DNA break repair and is associated with various human diseases, including cancer. Thus, high-quality 53BP1 chemical probes can aid in further understanding the role of 53BP1 in genome repair pathways. Herein, we utilized focused DNA-encoded library screening to identify the novel hit compound UNC8531, which binds the 53BP1 tandem Tudor domain (TTD) with an IC50 of 0.47 ± 0.09 µM in a TR-FRET assay and Kd values of 0.85 ± 0.17 and 0.79 ± 0.52 µM in ITC and SPR, respectively. UNC8531 was cocrystallized with the 53BP1 TTD to guide further optimization efforts, leading to UNC9512. NanoBRET and 53BP1-dependent foci formation experiments confirmed cellular target engagement. These results show that UNC9512 is a best-in-class small molecule 53BP1 antagonist that can aid further studies investigating the role of 53BP1 in DNA repair, gene editing, and oncogenesis.
Assuntos
Reparo do DNA , Peptídeos e Proteínas de Sinalização Intracelular , Humanos , DNA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/química , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Domínio TudorRESUMO
Chromatin regulatory complexes localize to specific sites via recognition of posttranslational modifications (PTMs) on N-terminal tails of histone proteins (e.g., methylation, acetylation, and phosphorylation). Molecular recognition of modified histones is mediated by "reader" protein subunits. The recruited complexes govern processes such as gene transcription, DNA replication, and chromatin remodeling. Dysregulation of histone modifications and consequent downstream effects have been associated with a variety of disease states, leading to an interest in developing small-molecule inhibitors of reader proteins. Herein, we describe a generalized time-resolved fluorescence resonance energy transfer (TR-FRET) assay for a panel of methyl-lysine (Kme) reader proteins. These assays are facile, robust, and reproducible. Importantly, this plug-and-play assay can be used for high-throughput screening (HTS) campaigns, generation of structure-activity relationships (SARs), and evaluation of inhibitor selectivity. Successful demonstration of this assay format for compound screening is highlighted with a pilot screen of a focused compound set with CBX2. This assay platform enables the discovery and characterization of chemical probes that can potently and selectively inhibit Kme reader proteins to ultimately accelerate studies of chromatin reader proteins in normal biology and disease states.
Assuntos
Descoberta de Drogas , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Histonas/metabolismo , Lisina/metabolismo , Relação Quantitativa Estrutura-Atividade , Descoberta de Drogas/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Ensaios de Triagem em Larga Escala/métodos , Modelos Moleculares , Ligação ProteicaRESUMO
Inositol hexakisphosphate kinases (IP6Ks) regulate a myriad of cellular processes, not only through their catalytic activity (which synthesizes InsP7, a multifunctional inositol pyrophosphate signaling molecule) but also through protein-protein interactions. To further study the enzymatic function and distinguish between these different mechanisms, specific inhibitors that target IP6K catalytic activity are required. Only one IP6K inhibitor is commonly used: N2-( m-(trifluoromethyl)benzyl) N6-( p-nitrobenzyl)purine (TNP). TNP is, however, compromised by weak potency, inability to distinguish between IP6K isoenzymes, off-target activities, and poor pharmacokinetic properties. Herein, we describe a new inhibitor discovery strategy, based on the high degree of structural conservation of the nucleotide-binding sites of IP6Ks and protein kinases; we screened for novel IP6K2 inhibitors using a focused set of compounds with features known, or computationally predicted, to target nucleotide binding by protein kinases. We developed a time-resolved fluorescence resonance energy transfer (TR-FRET) assay of adenosine diphosphate (ADP) formation from adenosine triphosphate (ATP). Novel hit compounds for IP6K2 were identified and validated with dose-response curves and an orthogonal assay. None of these inhibitors affected another inositol pyrophosphate kinase, PPIP5K. Our screening strategy offers multiple IP6K2 inhibitors for future development and optimization. This approach will be applicable to inhibitor discovery campaigns for other inositol phosphate kinases.