Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Appl Clin Med Phys ; 25(6): e14407, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38775807

RESUMO

BACKGROUND: With the ever-increasing requirements of accuracy and personalization of radiotherapy treatments, stereotactic radiotherapy (SRT) with volumetric modulated arc therapy (VMAT) on O-ring Halcyon radiotherapy system could potentially provide a fast, safe, and feasible treatment option. PURPOSE: The purpose of this study was to assess the delivery of Halcyon VMAT plans for small targets. METHODS: Well-defined VMAT-SRT plans were created on Halcyon radiotherapy system with the stacked and staggered dual-layer MLC design for the film measurement set-up and the target sizes and shapes designed to emulate the targets of the stereotactic treatments. The planar dose distributions were acquired with film measurements and compared to a current clinical reference dose calculation with AcurosXB (v18.0, Varian Medical Systems) and to Monte Carlo simulations. With the collapsed arc versions of the VMAT-SRT plans, the uncertainty in dose delivery due to the multileaf collimator (MLC) without the gantry rotation could be separated and analyzed. RESULTS: The target size was mainly limited by the resolution originated from the design of the MLC leaves. The results of the collapsed arc versions of the plans show good consistency among measured, calculated, and simulated dose distributions. With the full VMAT plans, the agreement between calculated and simulated dose distributions was consistent with the collapsed arc versions. The measured dose distribution agreed with the calculated and simulated dose distributions within the target regions, but considerable local differences were observed in the margins of the target. The largest differences located in the steep gradient regions presumably originating from the deviation of the isocenter. CONCLUSIONS: The potential of the Halcyon radiotherapy system for VMAT-SRT delivery was evaluated and the study revealed valuable insights on the machine characteristics with the delivery.


Assuntos
Método de Monte Carlo , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Aceleradores de Partículas/instrumentação , Neoplasias/radioterapia , Radiocirurgia/métodos
2.
Nano Lett ; 17(10): 5919-5924, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28877440

RESUMO

Grain boundaries in graphene are inherent in wafer-scale samples prepared by chemical vapor deposition. They can strongly influence the mechanical properties and electronic and heat transport in graphene. In this work, we employ extensive molecular dynamics simulations to study thermal transport in large suspended polycrystalline graphene samples. Samples of different controlled grain sizes are prepared by a recently developed efficient multiscale approach based on the phase field crystal model. In contrast to previous works, our results show that the scaling of the thermal conductivity with the grain size implies bimodal behavior with two effective Kapitza lengths. The scaling is dominated by the out-of-plane (flexural) phonons with a Kapitza length that is an order of magnitude larger than that of the in-plane phonons. We also show that, to get quantitative agreement with the most recent experiments, quantum corrections need to be applied to both the Kapitza conductance of grain boundaries and the thermal conductivity of pristine graphene, and the corresponding Kapitza lengths must be renormalized accordingly.

3.
Phys Rev Lett ; 116(22): 225305, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27314726

RESUMO

Using dynamical mean-field theory and exact diagonalization we study the phase diagram of the repulsive Haldane-Hubbard model, varying the interaction strength and the sublattice potential difference. In addition to the quantum Hall phase with Chern number C=2 and the band insulator with C=0 present already in the noninteracting model, the system also exhibits a C=0 Mott insulating phase, and a C=1 quantum Hall phase. We explain the latter phase by a spontaneous symmetry breaking where one of the spin components is in the Hall state and the other in the band insulating state.

4.
Nano Lett ; 14(9): 5128-32, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25078791

RESUMO

The electronic properties of graphene edges have been predicted to depend on their crystallographic orientation. The so-called zigzag (ZZ) edges haven been extensively explored theoretically and proposed for various electronic applications. However, their experimental study remains challenging due to the difficulty in realizing clean ZZ edges without disorder, reconstructions, or the presence of chemical functional groups. Here, we propose the ZZ-terminated, atomically sharp interfaces between graphene and hexagonal boron nitride (BN) as experimentally realizable, chemically stable model systems for graphene ZZ edges. Combining scanning tunneling microscopy and numerical methods, we explore the structure of graphene-BN interfaces and show them to host localized electronic states similar to those on the pristine graphene ZZ edge.

5.
J Chem Phys ; 141(23): 234102, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25527914

RESUMO

We present a computational scheme for orbital-free density functional theory (OFDFT) that simultaneously provides access to all-electron values and preserves the OFDFT linear scaling as a function of the system size. Using the projector augmented-wave method (PAW) in combination with real-space methods, we overcome some obstacles faced by other available implementation schemes. Specifically, the advantages of using the PAW method are twofold. First, PAW reproduces all-electron values offering freedom in adjusting the convergence parameters and the atomic setups allow tuning the numerical accuracy per element. Second, PAW can provide a solution to some of the convergence problems exhibited in other OFDFT implementations based on Kohn-Sham (KS) codes. Using PAW and real-space methods, our orbital-free results agree with the reference all-electron values with a mean absolute error of 10 meV and the number of iterations required by the self-consistent cycle is comparable to the KS method. The comparison of all-electron and pseudopotential bulk modulus and lattice constant reveal an enormous difference, demonstrating that in order to assess the performance of OFDFT functionals it is necessary to use implementations that obtain all-electron values. The proposed combination of methods is the most promising route currently available. We finally show that a parametrized kinetic energy functional can give lattice constants and bulk moduli comparable in accuracy to those obtained by the KS PBE method, exemplified with the case of diamond.

6.
Nano Lett ; 13(7): 3199-204, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23786613

RESUMO

One of the suggested ways of controlling the electronic properties of graphene is to establish a periodic potential modulation on it, which could be achieved by self-assembly of ordered molecular lattices. We have studied the self-assembly of cobalt phthalocyanines (CoPc) on chemical vapor deposition (CVD) grown graphene transferred onto silicon dioxide (SiO2) and hexagonal boron nitride (h-BN) substrates. Our scanning tunneling microscopy (STM) experiments show that, on both substrates, CoPc forms a square lattice. However, on SiO2, the domain size is limited by the corrugation of graphene, whereas on h-BN, single domain extends over entire terraces of the underlying h-BN. Additionally, scanning tunneling spectroscopy (STS) measurements suggest that CoPc molecules are doped by the substrate and that the level of doping varies from molecule to molecule. This variation is larger on graphene on SiO2 than on h-BN. These results suggest that graphene on h-BN is an ideal substrate for the study of molecular self-assembly toward controlling the electronic properties of graphene by engineered potential landscapes.

7.
Med Phys ; 50(5): 3191-3198, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36738126

RESUMO

BACKGROUND: In highly heterogeneous medium, such as one with lung tissue or air cavities, the dose in the low-density region or after it, as calculated by the conventional methods based on convolution with an energy-spreading kernel, is usually overestimated in comparison with measurements or more accurate predictions. PURPOSE: To correct the overestimation, we propose a method of scaling the total energy released per mass (TERMA). METHODS: The scaling depends on both the density distribution and the effective beam size in the lateral direction. RESULTS: The corrected convolution method achieved a significantly improved accuracy in both the lung-like tissue and the water-like region after air, compared to the uncorrected method. The TERMA correction only adds about 10% to the overall computational cost. CONCLUSIONS: Due to the improvement in accuracy and the preservation of computational efficiency, the proposed dose calculation method will be valuable for inverse treatment planning.


Assuntos
Fótons , Planejamento da Radioterapia Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Fótons/uso terapêutico , Dosagem Radioterapêutica , Pulmão , Método de Monte Carlo , Algoritmos
8.
Phys Med Biol ; 68(4)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36657172

RESUMO

Objective.A Monte Carlo (MC) model of a Halcyon and Ethos (Varian Medical Systems, a Siemens Healthineers Company) radiotherapy beam was validated and field-independent phase space (PHSP) files were recorded above the dual-layer multileaf collimators (MLC).Approach.The treatment head geometry was modeled according to engineering drawings and the dual-layer MLC was imported from CAD (computer-aided design) files. The information for the incident electron beam was achieved from an iterative electromagnetic solver. The validation of the model was performed by comparing the dose delivered by the square MLC fields as well as complex field measurements.Main results.An electron phase space was generated from linac simulations and achieved improved MC results. The output factors for square fields were within 1% and the largest differences of 5% were found in the build-up region of PDDs and the penumbra region of profiles. With the more complicated MLC-shaped field (Fishbone), the largest differences of up to 8% were found in the MLC leaf tip region due to the uncertainty of the MLC positioning and the mechanical leaf gap value. The impact of the collimator rotation on the PHSP solution has been assessed with both small and large fields, confirming negligible effects on in-field and out-of-field dose distributions.Significance.A computational model of the Halcyon and Ethos radiotherapy beam with a high accuracy implementation of the MLC was shown to be able to reproduce the radiation beam characteristics with square fields and more complex MLC-shaped fields. The field-independent PHSP files that were produced can be used as an accurate treatment head model above the MLC, and reduce the time to simulate particle transport through treatment head components.


Assuntos
Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador , Simulação por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Modelos Teóricos , Método de Monte Carlo , Radiometria/métodos
9.
Med Phys ; 49(12): 7754-7765, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36190516

RESUMO

BACKGROUND: With the ever-increasing complexity of dynamic radiotherapy treatments, dose calculation algorithms are challenged to accurately calculate the dose resulting from small, on- and off-axis multileaf collimator (MLC) aperture movements. Although the currently available Eclipse (Varian Medical Systems, Palo Alto) dose calculation algorithms still use a simplified, binary MLC model, a more advanced and detailed modeling of the MLC could be beneficial for the dose calculation precision of high-end treatments. PURPOSE: To improve the modeling of the MLC in the dose calculation algorithms of the Eclipse treatment planning system, an enhanced MLC attenuation model was constructed through ray tracing through the actual leaf designs for the most commonly used Varian MLC types. The enhanced leaf model (ELM) thus includes the rounded leaf tip shape, the drive screw cutout, and the leaf body thickness. The purpose of this work is to test out this new model and explore possible improvements compared to the previous model. METHODS: Dose calculations were performed in a research Eclipse environment equipped with the original and enhanced MLC model. Measurements were performed on TrueBeam and on Halcyon dual MLC treatment units. Dedicated static and dynamic MLC test plans were designed to challenge the dose calculation and highlight differences between both models while keeping the experimental setup simple in order to minimize measurement uncertainties. Measurements were performed with single ion chambers, 2D ion chamber arrays and film. RESULTS: The improved MLC model considerably improves the accuracy of the dose calculation for the test fields used in this study. For the TrueBeam MLC, improvements are most prominent for off-axis dose delivery through narrow (static or dynamic) MLC gaps. For 3 mm narrow sweeping gap deliveries at 12 cm off-axis, the advanced model agrees within 2% with the measurement, in contrast to the 12% deviation observed with the original MLC model. For the Halcyon MLC, improvements are especially prominent when the leaves of both MLC stacks are aligned, regardless of their position in the field. Sweeping gap measurements improve from a 7%-10% deviation with the original model to within 2% with the new model. CONCLUSIONS: Although test fields designed in this study emphasize the flaws in the original MLC dose calculation model, the enhanced MLC model resolves all of the observed discrepancies, showing excellent on- and off-axis agreements with all of the performed measurements.


Assuntos
Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radiometria
10.
Phys Rev Lett ; 107(23): 236803, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22182115

RESUMO

Despite the enormous interest in the properties of graphene and the potential of graphene nanostructures in electronic applications, the study of quantum-confined states in atomically well-defined graphene nanostructures remains an experimental challenge. Here, we study graphene quantum dots (GQDs) with well-defined edges in the zigzag direction, grown by chemical vapor deposition on an Ir(111) substrate by low-temperature scanning tunneling microscopy and spectroscopy. We measure the atomic structure and local density of states of individual GQDs as a function of their size and shape in the range from a couple of nanometers up to ca. 20 nm. The results can be quantitatively modeled by a relativistic wave equation and atomistic tight-binding calculations. The observed states are analogous to the solutions of the textbook "particle-in-a-box" problem applied to relativistic massless fermions.

11.
ACS Nano ; 15(6): 9945-9954, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34028269

RESUMO

Organic charge-transfer complexes (CTCs) formed by strong electron acceptor and strong electron donor molecules are known to exhibit exotic effects such as superconductivity and charge density waves. We present a low-temperature scanning tunneling microscopy and spectroscopy (LT-STM/STS) study of a two-dimensional (2D) monolayer CTC of tetrathiafulvalene (TTF) and fluorinated tetracyanoquinodimethane (F4TCNQ), self-assembled on the surface of oxygen-intercalated epitaxial graphene on Ir(111) (G/O/Ir(111)). We confirm the formation of the charge-transfer complex by dI/dV spectroscopy and direct imaging of the singly occupied molecular orbitals. High-resolution spectroscopy reveals a gap at zero bias, suggesting the formation of a correlated ground state at low temperatures. These results point to the possibility to realize and study correlated ground states in charge-transfer complex monolayers on weakly interacting surfaces.

12.
Nanoscale ; 9(42): 16329-16341, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29051943

RESUMO

For centuries, cutting and folding papers with special patterns have been used to build beautiful, flexible and complex three-dimensional structures. Inspired by the old idea of kirigami (paper cutting), and the outstanding properties of graphene, recently graphene kirigami structures were fabricated to enhance the stretchability of graphene. However, the possibility of further tuning the electronic and thermal transport along the 2D kirigami structures has remained original to investigate. We therefore performed extensive atomistic simulations to explore the electronic, heat and load transfer along various graphene kirigami structures. The mechanical response and thermal transport were explored using classical molecular dynamics simulations. We then used a real-space Kubo-Greenwood formalism to investigate the charge transport characteristics in graphene kirigami. Our results reveal that graphene kirigami structures present highly anisotropic thermal and electrical transport. Interestingly, we show the possibility of tuning the thermal conductivity of graphene by four orders of magnitude. Moreover, we discuss the engineering of kirigami patterns to further enhance their stretchability by more than 10 times as compared with pristine graphene. Our study not only provides a general understanding concerning the engineering of electronic, thermal and mechanical response of graphene, but more importantly can also be useful to guide future studies with respect to the synthesis of other 2D material kirigami structures, to reach highly flexible and stretchable nanostructures with finely tunable electronic and thermal properties.

13.
Sci Rep ; 7(1): 4754, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684741

RESUMO

Grain boundary triple junctions are a key structural element in polycrystalline materials. They are involved in the formation of microstructures and can influence the mechanical and electronic properties of materials. In this work we study the structure and energetics of triple junctions in graphene using a multiscale modelling approach based on combining the phase field crystal approach with classical molecular dynamics simulations and quantum-mechanical density functional theory calculations. We focus on the atomic structure and formation energy of the triple junctions as a function of the misorientation between the adjacent grains. We find that the triple junctions in graphene consist mostly of five-fold and seven-fold carbon rings. Most importantly, in addition to positive triple junction formation energies we also find a significant number of orientations for which the formation energy is negative.

14.
ACS Nano ; 11(5): 4960-4968, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28467831

RESUMO

π-conjugated organic molecules tend to adsorb in a planar configuration on graphene irrespective of their charge state. In contrast, here we demonstrate charging-induced strong structural relaxation of tetrafluorotetracyanoquinodimethane (F4TCNQ) on epitaxial graphene on Ir(111) (G/Ir(111)). The work function modulation over the graphene moiré unit cell causes site-selective charging of F4TCNQ. Upon charging, the molecule anchors to the face-centered cubic sites of the G/Ir(111) moiré through one or two cyano groups. The reaction is reversible and can be triggered on a single molecule by moving it between different adsorption sites. We introduce a model taking into account the trade-off between tilt-induced charging and reduced van der Waals interactions, which provides a general framework for understanding charging-induced structural relaxation on weakly interacting substrates. In addition, we argue that the partial sp3 rehybridization of the underlying graphene and the possible bonding mechanism between the cyano groups and the graphene substrate are also relevant for the complete understanding of the experiments. These results provide insight into molecular charging on graphene, and they are directly relevant for potential device applications where the use of molecules has been suggested for doping and band structure engineering.

15.
Sci Rep ; 5: 16741, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26584674

RESUMO

The combination of several materials into heterostructures is a powerful method for controlling material properties. The integration of graphene (G) with hexagonal boron nitride (BN) in particular has been heralded as a way to engineer the graphene band structure and implement spin- and valleytronics in 2D materials. Despite recent efforts, fabrication methods for well-defined G-BN structures on a large scale are still lacking. We report on a new method for producing atomically well-defined G-BN structures on an unprecedented length scale by exploiting the interaction of G and BN edges with a Ni(111) surface as well as each other.

16.
Nat Commun ; 6: 10177, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26658960

RESUMO

Graphene nanoribbons (GNRs)-narrow stripes of graphene-have emerged as promising building blocks for nanoelectronic devices. Recent advances in bottom-up synthesis have allowed production of atomically well-defined armchair GNRs with different widths and doping. While all experimentally studied GNRs have exhibited wide bandgaps, theory predicts that every third armchair GNR (widths of N=3m+2, where m is an integer) should be nearly metallic with a very small bandgap. Here, we synthesize the narrowest possible GNR belonging to this family (five carbon atoms wide, N=5). We study the evolution of the electronic bandgap and orbital structure of GNR segments as a function of their length using low-temperature scanning tunnelling microscopy and density-functional theory calculations. Already GNRs with lengths of 5 nm reach almost metallic behaviour with ∼100 meV bandgap. Finally, we show that defects (kinks) in the GNRs do not strongly modify their electronic structure.

17.
J Phys Condens Matter ; 25(50): 505504, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24275597

RESUMO

We find an unexpected scaling in the correlation energy of artificial atoms, i.e., harmonically confined two-dimensional quantum dots. The scaling relation is found through extensive numerical examinations including Hartree-Fock, variational quantum Monte Carlo, density functional, and full configuration interaction calculations. We show that the correlation energy, i.e., the true ground-state total energy minus the Hartree-Fock total energy, follows a simple function of the Coulomb energy, confinement strength and number of electrons. We find an analytic expression for this function, as well as for the correlation energy per particle and for the ratio between the correlation and total energies. Our tests for independent diffusion Monte Carlo and coupled-cluster results for quantum dots-including open-shell data-confirm the generality of the scaling obtained. As the scaling also applies well to ≳100 electrons, our results give interesting prospects for the development of correlation functionals within density functional theory.


Assuntos
Elétrons , Modelos Químicos , Método de Monte Carlo , Teoria Quântica , Simulação por Computador
18.
Nat Commun ; 4: 2023, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23756598

RESUMO

Graphene nanostructures, where quantum confinement opens an energy gap in the band structure, hold promise for future electronic devices. To realize the full potential of these materials, atomic-scale control over the contacts to graphene and the graphene nanostructure forming the active part of the device is required. The contacts should have a high transmission and yet not modify the electronic properties of the active region significantly to maintain the potentially exciting physics offered by the nanoscale honeycomb lattice. Here we show how contacting an atomically well-defined graphene nanoribbon to a metallic lead by a chemical bond via only one atom significantly influences the charge transport through the graphene nanoribbon but does not affect its electronic structure. Specifically, we find that creating well-defined contacts can suppress inelastic transport channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA