Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(26): e2204084119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727972

RESUMO

Discovery of deafness genes and elucidating their functions have substantially contributed to our understanding of hearing physiology and its pathologies. Here we report on DNA variants in MINAR2, encoding membrane integral NOTCH2-associated receptor 2, in four families underlying autosomal recessive nonsyndromic deafness. Neurologic evaluation of affected individuals at ages ranging from 4 to 80 y old does not show additional abnormalities. MINAR2 is a recently annotated gene with limited functional understanding. We detected three MINAR2 variants, c.144G > A (p.Trp48*), c.412_419delCGGTTTTG (p.Arg138Valfs*10), and c.393G > T, in 13 individuals with congenital- or prelingual-onset severe-to-profound sensorineural hearing loss (HL). The c.393G > T variant is shown to disrupt a splice donor site. We show that Minar2 is expressed in the mouse inner ear, with the protein localizing mainly in the hair cells, spiral ganglia, the spiral limbus, and the stria vascularis. Mice with loss of function of the Minar2 protein (Minar2tm1b/tm1b) present with rapidly progressive sensorineural HL associated with a reduction in outer hair cell stereocilia in the shortest row and degeneration of hair cells at a later age. We conclude that MINAR2 is essential for hearing in humans and mice and its disruption leads to sensorineural HL. Progressive HL observed in mice and in some affected individuals and as well as relative preservation of hair cells provides an opportunity to interfere with HL using genetic therapies.


Assuntos
Perda Auditiva Neurossensorial , Receptor Notch2 , Receptores de Superfície Celular , Animais , Perda Auditiva Neurossensorial/genética , Humanos , Mutação com Perda de Função , Camundongos , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores de Superfície Celular/genética , Estereocílios/metabolismo
2.
PLoS Genet ; 18(3): e1010114, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35298461

RESUMO

The highly evolutionarily conserved transport protein particle (TRAPP) complexes (TRAPP II and III) perform fundamental roles in subcellular trafficking pathways. Here we identified biallelic variants in TRAPPC10, a component of the TRAPP II complex, in individuals with a severe microcephalic neurodevelopmental disorder. Molecular studies revealed a weakened interaction between mutant TRAPPC10 and its putative adaptor protein TRAPPC2L. Studies of patient lymphoblastoid cells revealed an absence of TRAPPC10 alongside a concomitant absence of TRAPPC9, another key TRAPP II complex component associated with a clinically overlapping neurodevelopmental disorder. The TRAPPC9/10 reduction phenotype was recapitulated in TRAPPC10-/- knockout cells, which also displayed a membrane trafficking defect. Notably, both the reduction in TRAPPC9 levels and the trafficking defect in these cells could be rescued by wild type but not mutant TRAPPC10 gene constructs. Moreover, studies of Trappc10-/- knockout mice revealed neuroanatomical brain defects and microcephaly, paralleling findings seen in the human condition as well as in a Trappc9-/- mouse model. Together these studies confirm autosomal recessive TRAPPC10 variants as a cause of human disease and define TRAPP-mediated pathomolecular outcomes of importance to TRAPPC9 and TRAPPC10 mediated neurodevelopmental disorders in humans and mice.


Assuntos
Microcefalia , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo
3.
J Gene Med ; 25(10): e3513, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37178061

RESUMO

BACKGROUND: Population diversity is important and rare disease isolates can frequently reveal novel homozygous or biallelic mutations that lead to expanded clinical heterogeneity, with diverse clinical presentations. METHODS: The present study describes two consanguineous families with a total of seven affected individuals suffering from a clinically similar severe syndromic neurological disorder, with abnormal development and central nervous system (CNS) and peripheral nervous system (PNS) abnormalities. Whole exome sequencing (WES) and Sanger sequencing followed by 3D protein modeling was performed to identify the disease-causing gene. RNA was extracted from the fresh blood of both families affected and healthy individuals. RESULTS: The families were clinically assessed in the field in different regions of Khyber Pakhtunkhwa. Magnetic resonance imagining was obtained in the probands and blood was collected for DNA extraction and WES was performed. Sanger sequencing confirmed a homozygous, likely pathogenic mutation (GRCh38: chr17:42684199G>C; (NM_003632.3): c.333G>C);(NP_003623.1): p.(Trp111Cys) in the CNTNAP1 gene in family A, previously associated with Congenital Hypo myelinating Neuropathy 3 (CHN3; OMIM # 618186) and a novel nonsense variant in family B, (GRCh38: chr16: 57654086C>T; NC_000016.10 (NM_001370440.1): c.721C>T); (NP_001357369.1): p.(Gln241Ter) in the ADGRG1 gene previously associated with bilateral frontoparietal polymicrogyria (OMIM # 606854); both families have extended CNS and PNS clinical manifestations. In addition, 3D protein modeling was performed for the missense variant, p.(Trp111Cys), identified in the CNTNAP1, suggesting extensive secondary structure changes that might lead to improper function or downstream signaling. No RNA expression was observed in both families affected and healthy individuals hence showing that these genes are not expressed in blood. CONCLUSIONS: In the present study, two novel biallelic variants in the CNTNAP1 and ADGRG1 genes in two different consanguineous families with a clinical overlap in the phenotype were identified. Thus, the clinical and mutation spectrum is expanded to provide further evidence that CNTNAP1 and ADGRG1 are very important for widespread neurological development.


Assuntos
Moléculas de Adesão Celular Neuronais , Mutação de Sentido Incorreto , Humanos , Consanguinidade , Mutação , Genes Recessivos , Fenótipo , Moléculas de Adesão Celular Neuronais/genética
4.
Am J Med Genet A ; 188(2): 498-508, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34697879

RESUMO

Autosomal recessive limb-girdle muscular dystrophy-1 (LGMDR1) is an autosomal recessive disorder characterized by progressive weakness of the proximal limb and girdle muscles. Biallelic mutations in CAPN3 are reported frequently to cause LGMDR1. Here, we describe 11 individuals from three unrelated consanguineous families that present with typical features of LGMDR1 that include proximal muscle wasting, weakness of the upper and lower limbs, and elevated serum creatine kinase. Whole-exome sequencing identified a rare homozygous CAPN3 variant near the exon 2 splice donor site that segregates with disease in all three families. mRNA splicing studies showed partial retention of intronic sequence and subsequent introduction of a premature stop codon (NM_000070.3: c.379 + 3A>G; p.Asp128Glyfs*15). Furthermore, we observe reduced CAPN3 expression in primary dermal fibroblasts derived from an affected individual, suggesting instability and/or nonsense-mediated decay of mutation-bearing mRNA. Genome-wide homozygosity mapping and single-nucleotide polymorphism analysis identified a shared haplotype and supports a possible founder effect for the CAPN3 variant. Together, our data extend the mutational spectrum of LGMDR1 and have implications for improved diagnostics for individuals of Pakistani origin.


Assuntos
Calpaína , Distrofia Muscular do Cíngulo dos Membros , Calpaína/genética , Humanos , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Paquistão , RNA Mensageiro/genética
5.
PLoS Genet ; 14(8): e1007504, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30157172

RESUMO

We identified a homozygous missense alteration (c.75C>A, p.D25E) in CLCC1, encoding a presumptive intracellular chloride channel highly expressed in the retina, associated with autosomal recessive retinitis pigmentosa (arRP) in eight consanguineous families of Pakistani descent. The p.D25E alteration decreased CLCC1 channel function accompanied by accumulation of mutant protein in granules within the ER lumen, while siRNA knockdown of CLCC1 mRNA induced apoptosis in cultured ARPE-19 cells. TALEN KO in zebrafish was lethal 11 days post fertilization. The depressed electroretinogram (ERG) cone response and cone spectral sensitivity of 5 dpf KO zebrafish and reduced eye size, retinal thickness, and expression of rod and cone opsins could be rescued by injection of wild type CLCC1 mRNA. Clcc1+/- KO mice showed decreased ERGs and photoreceptor number. Together these results strongly suggest that intracellular chloride transport by CLCC1 is a critical process in maintaining retinal integrity, and CLCC1 is crucial for survival and function of retinal cells.


Assuntos
Canais de Cloreto/genética , Mutação de Sentido Incorreto , Retinose Pigmentar/genética , Animais , Povo Asiático/genética , Linhagem Celular , Canais de Cloreto/metabolismo , Citoplasma/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Células HEK293 , Homozigoto , Humanos , Camundongos , Camundongos Knockout , Paquistão , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/diagnóstico , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
PLoS Genet ; 13(1): e1006470, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28081210

RESUMO

Orofacial clefting is amongst the most common of birth defects, with both genetic and environmental components. Although numerous studies have been undertaken to investigate the complexities of the genetic etiology of this heterogeneous condition, this factor remains incompletely understood. Here, we describe mutations in the HYAL2 gene as a cause of syndromic orofacial clefting. HYAL2, encoding hyaluronidase 2, degrades extracellular hyaluronan, a critical component of the developing heart and palatal shelf matrix. Transfection assays demonstrated that the gene mutations destabilize the molecule, dramatically reducing HYAL2 protein levels. Consistent with the clinical presentation in affected individuals, investigations of Hyal2-/- mice revealed craniofacial abnormalities, including submucosal cleft palate. In addition, cor triatriatum sinister and hearing loss, identified in a proportion of Hyal2-/- mice, were also found as incompletely penetrant features in affected humans. Taken together our findings identify a new genetic cause of orofacial clefting in humans and mice, and define the first molecular cause of human cor triatriatum sinister, illustrating the fundamental importance of HYAL2 and hyaluronan turnover for normal human and mouse development.


Assuntos
Moléculas de Adesão Celular/genética , Fenda Labial/genética , Fissura Palatina/genética , Coração Triatriado/genética , Hialuronoglucosaminidase/genética , Mutação , Adolescente , Animais , Criança , Pré-Escolar , Fenda Labial/patologia , Fissura Palatina/patologia , Coração Triatriado/patologia , Feminino , Proteínas Ligadas por GPI/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linhagem , Penetrância , Síndrome
7.
Ann Hum Genet ; 83(6): 477-482, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31173343

RESUMO

Ciliopathies are a clinically and genetically heterogeneous group of disorders often exhibiting phenotypic overlap and caused by abnormalities in the structure or function of cellular cilia. As such, a precise molecular diagnosis is important for guiding clinical management and genetic counseling. In the present study, two Pakistani families comprising individuals with overlapping clinical features suggestive of a ciliopathy syndrome, including intellectual disability, obesity, congenital retinal dystrophy, and hypogonadism (in males), were investigated clinically and genetically. Whole-exome sequencing identified the likely causes of disease as a novel homozygous frameshift mutation (NM_152384.2: c.196delA; p.(Arg66Glufs*12); family 1) in BBS5, and a nonsense mutation (NM_019892.5:c.1879C>T; p.Gln627*; family 2) in INPP5E, previously reported in an extended Pakistani family with MORM syndrome. Our findings expand the molecular spectrum associated with BBS5 mutations in Pakistan and provide further supportive evidence that the INPP5E mutation is a common cause of ciliopathy in Northern Pakistan, likely representing a regional founder mutation. This study also highlights the value of genomic studies in Pakistan for families affected by rare heterogeneous developmental disorders and where clinical phenotyping may be limited by geographical and financial constraints. The identification of the spectrum and frequency of disease-causing variants within this setting enables the development of population-specific genetic testing strategies targeting variants common to the local population and improving health care outcomes.


Assuntos
Ciliopatias/diagnóstico , Ciliopatias/genética , Proteínas do Citoesqueleto/genética , Mutação , Proteínas de Ligação a Fosfato/genética , Monoéster Fosfórico Hidrolases/genética , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Efeito Fundador , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Paquistão , Linhagem , Adulto Jovem
8.
BMC Med Genet ; 20(1): 145, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31443639

RESUMO

BACKGROUND: Inherited palmoplantar keratodermas (PPKs) are clinically and genetically heterogeneous and phenotypically diverse group of genodermatoses characterized by hyperkeratosis of the palms and soles. More than 20 genes have been reported to be associated with PPKs including desmoglein 1 (DSG1) a key molecular component for epidermal adhesion and differentiation. Mal de Meleda (MDM) is a rare inherited autosomal recessive genodermatosis characterized by transgrediens PPK, associated with mutations in the secreted LY6/PLAUR domain containing 1 (SLURP1) gene. METHODS: This study describes clinical as well as genetic whole exome sequencing (WES) and di-deoxy sequencing investigations in two Pakistani families with a total of 12 individuals affected by PPK. RESULTS: WES identified a novel homozygous nonsense variant in SLURP1, and a novel heterozygous nonsense variant in DSG1, as likely causes of the conditions in each family. CONCLUSIONS: This study expands knowledge regarding the molecular basis of PPK, providing important information to aid clinical management in families with PPK from Pakistan.


Assuntos
Antígenos Ly/genética , Desmogleína 1/genética , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Ceratodermia Palmar e Plantar/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Adolescente , Adulto , Criança , Códon sem Sentido , Etnicidade , Feminino , Variação Genética , Genótipo , Heterozigoto , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Paquistão , Linhagem , Sequenciamento do Exoma , Adulto Jovem
9.
BMC Med Genet ; 20(1): 199, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852446

RESUMO

BACKGROUND: Neurological disorders are a common cause of morbidity and mortality within Pakistani populations. It is one of the most important challenges in healthcare, with significant life-long socio-economic burden. METHODS: We investigated the cause of disease in three Pakistani families in individuals with unexplained autosomal recessive neurological conditions, using both genome-wide SNP mapping and whole exome sequencing (WES) of affected individuals. RESULTS: We identified a homozygous splice site variant (NM_000521:c.445 + 1G > T) in the hexosaminidase B (HEXB) gene confirming a diagnosis of Sandhoff disease (SD; type II GM2-gangliosidosis), an autosomal recessive lysosomal storage disorder caused by deficiency of hexosaminidases in a single family. In two further unrelated families, we identified a homozygous frameshift variant (NM_024298.3:c.758_778del; p.Glu253_Ala259del) in membrane-bound O-acyltransferase family member 7 (MBOAT7) as the likely cause of disease. MBOAT7 gene variants have recently been identified as a cause of intellectual disability (ID), seizures and autistic features. CONCLUSIONS: We identified two metabolic disorders of lipid biosynthesis within three Pakistani families presenting with undiagnosed neurodevelopmental conditions. These findings enabled an accurate neurological disease diagnosis to be provided for these families, facilitating disease management and genetic counselling within this population. This study consolidates variation within MBOAT7 as a cause of neurodevelopmental disorder, broadens knowledge of the clinical outcomes associated with MBOAT7-related disorder, and confirms the likely presence of a regionally prevalent founder variant (c.758_778del; p.Glu253_Ala259del) in Pakistan.


Assuntos
Aciltransferases/genética , Homozigoto , Proteínas de Membrana/genética , Doenças do Sistema Nervoso/genética , Cadeia beta da beta-Hexosaminidase/genética , Consanguinidade , Eletroencefalografia , Feminino , Genes Recessivos , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Mutação , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/fisiopatologia , Paquistão , Polimorfismo de Nucleotídeo Único , Sequenciamento do Exoma
10.
BMC Med Genet ; 19(1): 160, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30200890

RESUMO

BACKGROUND: Autosomal recessive anophthalmia and microphthalmia are rare developmental eye defects occurring during early fetal development. Syndromic and non-syndromic forms of anophthalmia and microphthalmia demonstrate extensive genetic and allelic heterogeneity. To date, disease mutations have been identified in 29 causative genes associated with anophthalmia and microphthalmia, with autosomal dominant, autosomal recessive and X-linked inheritance patterns described. Biallelic ALDH1A3 gene variants are the leading genetic causes of autosomal recessive anophthalmia and microphthalmia in countries with frequent parental consanguinity. METHODS: This study describes genetic investigations in two consanguineous Pakistani families with a total of seven affected individuals with bilateral non-syndromic clinical anophthalmia. RESULTS: Using whole exome and Sanger sequencing, we identified two novel homozygous ALDH1A3 sequence variants as likely responsible for the condition in each family; missense mutation [NM_000693.3:c.1240G > C, p.Gly414Arg; Chr15:101447332G > C (GRCh37)] in exon 11 (family 1), and, a frameshift mutation [NM_000693.3:c.172dup, p.Glu58Glyfs*5; Chr15:101425544dup (GRCh37)] in exon 2 predicted to result in protein truncation (family 2). CONCLUSIONS: This study expands the molecular spectrum of pathogenic ALDH1A3 variants associated with anophthalmia and microphthalmia, and provides further insight of the key role of the ALDH1A3 in human eye development.


Assuntos
Aldeído Oxirredutases/genética , Anoftalmia/genética , Genes Recessivos/genética , Microftalmia/genética , Mutação/genética , Consanguinidade , Exoma/genética , Éxons/genética , Feminino , Humanos , Masculino , Linhagem , Análise de Sequência de DNA/métodos
11.
BMC Med Genet ; 19(1): 25, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29458334

RESUMO

BACKGROUND: L-2-hydroxyglutaric aciduria (L2HGA) is a progressive neurometabolic disease of brain caused by mutations of in L-2-hydroxyglutarate dehydrogenase (L2HGDH) gene. Cardinal clinical features include cerebellar ataxia, epilepsy, neurodevelopmental delay, intellectual disability, and other clinical neurological deficits. CASE PRESENTATION: We describe an index case of the family presented with generalised tonic-clonic seizure, developmental delay, intellectual disability, and ataxia. Initially, the differential diagnosis was difficult to be established and a SNP genome wide scan identified the candidate region on chromosome 14q22.1. DNA sequencing showed a novel homozygous mutation in the candidate gene L2HGDH (NM_024884.2: c.178G > A; p.Gly60Arg). The mutation p.Gly60Arg lies in the highly conserved FAD/NAD(P)-binding domain of this mitochondrial enzyme, predicted to disturb enzymatic function. CONCLUSIONS: The combination of homozygosity mapping and DNA sequencing identified a novel mutation in Pakistani family with variable clinical features. This is second report of a mutation in L2HGDH gene from Pakistan and the largest family with L2HGA reported to date.


Assuntos
Oxirredutases do Álcool/genética , Ataxia/genética , Consanguinidade , Epilepsia/genética , Deficiência Intelectual/genética , Convulsões/genética , Adolescente , Sequência de Aminoácidos , Povo Asiático/genética , Ataxia/diagnóstico , Mapeamento Cromossômico , Cromossomos Humanos Par 14/genética , Biologia Computacional , Epilepsia/diagnóstico , Feminino , Homozigoto , Humanos , Deficiência Intelectual/diagnóstico , Mutação , Mutação de Sentido Incorreto , Paquistão , Linhagem , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Convulsões/diagnóstico , Análise de Sequência de DNA
12.
Brain ; 140(11): 2838-2850, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088354

RESUMO

The presynaptic, high-affinity choline transporter is a critical determinant of signalling by the neurotransmitter acetylcholine at both central and peripheral cholinergic synapses, including the neuromuscular junction. Here we describe an autosomal recessive presynaptic congenital myasthenic syndrome presenting with a broad clinical phenotype due to homozygous choline transporter missense mutations. The clinical phenotype ranges from the classical presentation of a congenital myasthenic syndrome in one patient (p.Pro210Leu), to severe neurodevelopmental delay with brain atrophy (p.Ser94Arg) and extend the clinical outcomes to a more severe spectrum with infantile lethality (p.Val112Glu). Cells transfected with mutant transporter construct revealed a virtually complete loss of transport activity that was paralleled by a reduction in transporter cell surface expression. Consistent with these findings, studies to determine the impact of gene mutations on the trafficking of the Caenorhabditis elegans choline transporter orthologue revealed deficits in transporter export to axons and nerve terminals. These findings contrast with our previous findings in autosomal dominant distal hereditary motor neuropathy of a dominant-negative frameshift mutation at the C-terminus of choline transporter that was associated with significantly reduced, but not completely abrogated choline transporter function. Together our findings define divergent neuropathological outcomes arising from different classes of choline transporter mutation with distinct disease processes and modes of inheritance. These findings underscore the essential role played by the choline transporter in sustaining acetylcholine neurotransmission at both central and neuromuscular synapses, with important implications for treatment and drug selection.


Assuntos
Encéfalo/patologia , Mutação de Sentido Incorreto , Síndromes Miastênicas Congênitas/genética , Transtornos do Neurodesenvolvimento/genética , Simportadores/genética , Animais , Animais Geneticamente Modificados , Atrofia , Axônios/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Pré-Escolar , Feminino , Células HEK293 , Homozigoto , Humanos , Lactente , Masculino , Proteínas de Membrana Transportadoras/genética , Linhagem , Terminações Pré-Sinápticas/metabolismo , Transporte Proteico , Simportadores/metabolismo
13.
Brain ; 140(3): 547-554, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052917

RESUMO

Mutations in genes involved in lipid metabolism have increasingly been associated with various subtypes of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative motor neuron disorders characterized by spastic paraparesis. Here, we report an unusual autosomal recessive neurodegenerative condition, best classified as a complicated form of hereditary spastic paraplegia, associated with mutation in the ethanolaminephosphotransferase 1 (EPT1) gene (now known as SELENOI), responsible for the final step in Kennedy pathway forming phosphatidylethanolamine from CDP-ethanolamine. Phosphatidylethanolamine is a glycerophospholipid that, together with phosphatidylcholine, constitutes more than half of the total phospholipids in eukaryotic cell membranes. We determined that the mutation defined dramatically reduces the enzymatic activity of EPT1, thereby hindering the final step in phosphatidylethanolamine synthesis. Additionally, due to central nervous system inaccessibility we undertook quantification of phosphatidylethanolamine levels and species in patient and control blood samples as an indication of liver phosphatidylethanolamine biosynthesis. Although this revealed alteration to levels of specific phosphatidylethanolamine fatty acyl species in patients, overall phosphatidylethanolamine levels were broadly unaffected indicating that in blood EPT1 inactivity may be compensated for, in part, via alternate biochemical pathways. These studies define the first human disorder arising due to defective CDP-ethanolamine biosynthesis and provide new insight into the role of Kennedy pathway components in human neurological function.


Assuntos
Etanolaminofosfotransferase/genética , Etanolaminofosfotransferase/metabolismo , Mutação/genética , Fosfolipídeos/biossíntese , Transdução de Sinais/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Criança , Pré-Escolar , Cromatografia Líquida , Consanguinidade , Análise Mutacional de DNA , Saúde da Família , Feminino , Expressão Gênica , Humanos , Lactente , Masculino , Espectrometria de Massas , Omã , Fosfolipídeos/sangue , Saccharomyces cerevisiae , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/enzimologia , Paraplegia Espástica Hereditária/patologia
14.
Brain ; 140(4): 940-952, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334956

RESUMO

PRUNE is a member of the DHH (Asp-His-His) phosphoesterase protein superfamily of molecules important for cell motility, and implicated in cancer progression. Here we investigated multiple families from Oman, India, Iran and Italy with individuals affected by a new autosomal recessive neurodevelopmental and degenerative disorder in which the cardinal features include primary microcephaly and profound global developmental delay. Our genetic studies identified biallelic mutations of PRUNE1 as responsible. Our functional assays of disease-associated variant alleles revealed impaired microtubule polymerization, as well as cell migration and proliferation properties, of mutant PRUNE. Additionally, our studies also highlight a potential new role for PRUNE during microtubule polymerization, which is essential for the cytoskeletal rearrangements that occur during cellular division and proliferation. Together these studies define PRUNE as a molecule fundamental for normal human cortical development and define cellular and clinical consequences associated with PRUNE mutation.


Assuntos
Encéfalo/crescimento & desenvolvimento , Proteínas de Transporte/genética , Deficiências do Desenvolvimento/genética , Microcefalia/genética , Adolescente , Diferenciação Celular/genética , Movimento Celular/genética , Córtex Cerebral/crescimento & desenvolvimento , Criança , Pré-Escolar , Citoesqueleto/genética , Citoesqueleto/ultraestrutura , Feminino , Genes Recessivos , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Humanos , Lactente , Masculino , Microtúbulos/genética , Microtúbulos/ultraestrutura , Mutação/genética , Linhagem , Monoéster Fosfórico Hidrolases , Adulto Jovem
15.
Hum Mutat ; 37(11): 1157-1161, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27492651

RESUMO

Hereditary spastic paraplegias (HSPs) are genetically and clinically heterogeneous axonopathies primarily affecting upper motor neurons and, in complex forms, additional neurons. Here, we report two families with distinct recessive mutations in TFG, previously suggested to cause HSP based on findings in a single small family with complex HSP. The first carried a homozygous c.317G>A (p.R106H) variant and presented with pure HSP. The second carried the same homozygous c.316C>T (p.R106C) variant previously reported and displayed a similarly complex phenotype including optic atrophy. Haplotyping and bisulfate sequencing revealed evidence for a c.316C>T founder allele, as well as for a c.316_317 mutation hotspot. Expression of mutant TFG proteins in cultured neurons revealed mitochondrial fragmentation, the extent of which correlated with clinical severity. Our findings confirm the causal nature of bi-allelic TFG mutations for HSP, broaden the clinical and mutational spectra, and suggest mitochondrial impairment to represent a pathomechanistic link to other neurodegenerative conditions.


Assuntos
Mutação de Sentido Incorreto , Proteínas/genética , Proteínas/metabolismo , Paraplegia Espástica Hereditária/patologia , Animais , Células Cultivadas , Feminino , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Mitocôndrias/patologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Análise de Sequência de DNA , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
16.
BMC Med Genet ; 17(1): 82, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27852232

RESUMO

BACKGROUND: CMT-2 is a clinically and genetically heterogeneous group of peripheral axonal neuropathies characterized by slowly progressive weakness and atrophy of distal limb muscles resulting from length-dependent motor and sensory neurodegeneration. Classical giant axonal neuropathy (GAN) is an autosomal recessively inherited progressive neurodegenerative disorder of the peripheral and central nervous systems, typically diagnosed in early childhood and resulting in death by the end of the third decade. Distinctive phenotypic features are the presence of "kinky" hair and long eyelashes. The genetic basis of the disease has been well established, with over 40 associated mutations identified in the gene GAN, encoding the BTB-KELCH protein gigaxonin, involved in intermediate filament regulation. METHODS: An Illumina Human CytoSNP-12 array followed by whole exome sequence analysis was used to identify the disease associated gene mutation in a large consanguineous family diagnosed with Charcot-Marie-Tooth disease type 2 (CMT-2) from which all but one affected member had straight hair. RESULTS: Here we report the identification of a novel GAN missense mutation underlying the CMT-2 phenotype observed in this family. Although milder forms of GAN, with and without the presence of kinky hair have been reported previously, a phenotype distinct from that was investigated in this study. All family members lacked common features of GAN, including ataxia, nystagmus, intellectual disability, seizures, and central nervous system involvement. CONCLUSIONS: Our findings broaden the spectrum of phenotypes associated with GAN mutations and emphasize a need to proceed with caution when providing families with diagnostic or prognostic information based on either clinical or genetic findings alone.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Consanguinidade , Proteínas do Citoesqueleto/genética , Mutação de Sentido Incorreto/genética , Adulto , Alelos , Animais , Encéfalo/diagnóstico por imagem , Doença de Charcot-Marie-Tooth/patologia , Criança , Pré-Escolar , Fenômenos Eletrofisiológicos , Genótipo , Humanos , Israel , Masculino , Dados de Sequência Molecular , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Gêmeos Dizigóticos
17.
Brain ; 138(Pt 8): 2173-90, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26070982

RESUMO

We describe a novel nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum among 30 children (ages 1.0 to 28 years) from diverse Amish demes. Children with nephrocerebellar syndrome had progressive microcephaly, visual impairment, stagnant psychomotor development, abnormal extrapyramidal movements and nephrosis. Fourteen died between ages 2.7 and 28 years, typically from renal failure. Post-mortem studies revealed (i) micrencephaly without polymicrogyria or heterotopia; (ii) atrophic cerebellar hemispheres with stunted folia, profound granule cell depletion, Bergmann gliosis, and signs of Purkinje cell deafferentation; (iii) selective striatal cholinergic interneuron loss; and (iv) optic atrophy with delamination of the lateral geniculate nuclei. Renal tissue showed focal and segmental glomerulosclerosis and extensive effacement and microvillus transformation of podocyte foot processes. Nephrocerebellar syndrome mapped to 700 kb on chromosome 15, which contained a single novel homozygous frameshift variant (WDR73 c.888delT; p.Phe296Leufs*26). WDR73 protein is expressed in human cerebral cortex, hippocampus, and cultured embryonic kidney cells. It is concentrated at mitotic microtubules and interacts with α-, ß-, and γ-tubulin, heat shock proteins 70 and 90 (HSP-70; HSP-90), and the carbamoyl phosphate synthetase 2/aspartate transcarbamylase/dihydroorotase multi-enzyme complex. Recombinant WDR73 p.Phe296Leufs*26 and p.Arg256Profs*18 proteins are truncated, unstable, and show increased interaction with α- and ß-tubulin and HSP-70/HSP-90. Fibroblasts from patients homozygous for WDR73 p.Phe296Leufs*26 proliferate poorly in primary culture and senesce early. Our data suggest that in humans, WDR73 interacts with mitotic microtubules to regulate cell cycle progression, proliferation and survival in brain and kidney. We extend the Galloway-Mowat syndrome spectrum with the first description of diencephalic and striatal neuropathology.


Assuntos
Encéfalo/metabolismo , Ciclo Celular/genética , Hérnia Hiatal/genética , Microcefalia/genética , Mutação/genética , Nefrose/genética , Proteínas/metabolismo , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Homozigoto , Humanos , Lactente , Masculino , Proteínas/genética , Tubulina (Proteína)/genética , Adulto Jovem
19.
Brain ; 136(Pt 12): 3618-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24103911

RESUMO

Glycosphingolipids are ubiquitous constituents of eukaryotic plasma membranes, and their sialylated derivatives, gangliosides, are the major class of glycoconjugates expressed by neurons. Deficiencies in their catabolic pathways give rise to a large and well-studied group of inherited disorders, the lysosomal storage diseases. Although many glycosphingolipid catabolic defects have been defined, only one proven inherited disease arising from a defect in ganglioside biosynthesis is known. This disease, because of defects in the first step of ganglioside biosynthesis (GM3 synthase), results in a severe epileptic disorder found at high frequency amongst the Old Order Amish. Here we investigated an unusual neurodegenerative phenotype, most commonly classified as a complex form of hereditary spastic paraplegia, present in families from Kuwait, Italy and the Old Order Amish. Our genetic studies identified mutations in B4GALNT1 (GM2 synthase), encoding the enzyme that catalyzes the second step in complex ganglioside biosynthesis, as the cause of this neurodegenerative phenotype. Biochemical profiling of glycosphingolipid biosynthesis confirmed a lack of GM2 in affected subjects in association with a predictable increase in levels of its precursor, GM3, a finding that will greatly facilitate diagnosis of this condition. With the description of two neurological human diseases involving defects in two sequentially acting enzymes in ganglioside biosynthesis, there is the real possibility that a previously unidentified family of ganglioside deficiency diseases exist. The study of patients and animal models of these disorders will pave the way for a greater understanding of the role gangliosides play in neuronal structure and function and provide insights into the development of effective treatment therapies.


Assuntos
Gangliosidoses GM2/genética , Mutação/genética , N-Acetilgalactosaminiltransferases/genética , Amish , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Análise Mutacional de DNA , Saúde da Família , Feminino , Fibroblastos/metabolismo , Gangliosídeos/biossíntese , Gangliosidoses GM2/patologia , Humanos , Itália , Masculino , Fenótipo , Pele/patologia
20.
J Med Genet ; 50(2): 65-73, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23243086

RESUMO

BACKGROUND: Deregulation of the activity of the ubiquitin ligase E6AP (UBE3A) is well recognised to contribute to the development of Angelman syndrome (AS). The ubiquitin ligase HERC2, encoded by the HERC2 gene is thought to be a key regulator of E6AP. METHODS AND RESULTS: Using a combination of autozygosity mapping and linkage analysis, we studied an autosomal-recessive neurodevelopmental disorder with some phenotypic similarities to AS, found among the Old Order Amish. Our molecular investigation identified a mutation in HERC2 associated with the disease phenotype. We establish that the encoded mutant HERC2 protein has a reduced half-life compared with its wild-type counterpart, which is associated with a significant reduction in HERC2 levels in affected individuals. CONCLUSIONS: Our data implicate a model in which disruption of HERC2 function relates to a reduction in E6AP activity resulting in neurodevelopmental delay, suggesting a previously unrecognised role of HERC2 in the pathogenesis of AS.


Assuntos
Amish/genética , Síndrome de Angelman/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação , Adolescente , Adulto , Proteínas de Ciclo Celular/química , Linhagem Celular , Criança , Pré-Escolar , DNA/análise , DNA/genética , Análise Mutacional de DNA , Feminino , Fibroblastos/química , Fibroblastos/metabolismo , Estudo de Associação Genômica Ampla , Fatores de Troca do Nucleotídeo Guanina/sangue , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Lactente , Masculino , Modelos Moleculares , Proteínas Nucleares/química , Linhagem , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA