Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Gut ; 71(5): 919-927, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34353864

RESUMO

OBJECTIVE: Health-promoting dietary fibre including inulin often triggers gastrointestinal symptoms in patients with IBS, limiting their intake. Our aim was to test if coadministering psyllium with inulin would reduce gas production. DESIGN: A randomised, four-period, four-treatment, placebo-controlled, crossover trial in 19 patients with IBS. Subjects ingested a 500 mL test drink containing either inulin 20 g, psyllium 20 g, inulin 20 g+ psyllium 20 g or dextrose 20 g (placebo). Breath hydrogen was measured every 30 min with MRI scans hourly for 6 hours. Faecal samples from a subset of the patients with IBS were tested using an in vitro fermentation model. Primary endpoint was colonic gas assessed by MRI. RESULTS: Colonic gas rose steadily from 0 to 6 hours, with inulin causing the greatest rise, median (IQR) AUC(0-360 min) 3145 (848-6502) mL·min. This was significantly reduced with inulin and psyllium coadministration to 618 (62-2345) mL·min (p=0.02), not significantly different from placebo. Colonic volumes AUC(0-360 min) were significantly larger than placebo for both inulin (p=0.002) and inulin and psyllium coadministration (p=0.005). Breath hydrogen rose significantly from 120 min after inulin but not psyllium; coadministration of psyllium with inulin delayed and reduced the maximum increase, AUC(0-360 min) from 7230 (3255-17910) ppm·hour to 1035 (360-4320) ppm·hour, p=0.007.Fermentation in vitro produced more gas with inulin than psyllium. Combining psyllium with inulin did not reduce gas production. CONCLUSIONS: Psyllium reduced inulin-related gas production in patients with IBS but does not directly inhibit fermentation. Whether coadministration with psyllium increases the tolerability of prebiotics in IBS warrants further study. TRIAL REGISTRATION NUMBER: NCT03265002.


Assuntos
Síndrome do Intestino Irritável , Psyllium , Testes Respiratórios , Fermentação , Humanos , Hidrogênio/análise , Inulina/metabolismo , Imageamento por Ressonância Magnética
2.
Crit Rev Food Sci Nutr ; 61(22): 3892-3903, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32865002

RESUMO

Short chain fatty acids (SCFA) are produced by bacterial fermentation of non-digestible carbohydrates (NDC) and have many potential tissue and SCFA specific actions, from providing fuel for colonic cells to appetite regulation. Many studies have described the fermentation of different carbohydrates, often using in vitro batch culture. As evidence-based critical evaluation of substrates selectively promoting production of individual SCFA is lacking, we performed a systematic scoping literature review. Databases were searched to identify relevant papers published between 1900 and 12/06/2016. Search terms included In vitro batch fermentation and In vitro short chain fatty acid production. Articles were considered for essential criteria allowing equivalent comparison of SCFA between NDC. Seventy seven articles were included in the final analysis examining 29 different carbohydrates. After 24-hour fermentation, galacto-oligosaccharide ranked highest for butyrate and total SCFA production and second for acetate production. Rhamnose ranked highest for propionate production. The lowest SCFA production was observed for kiwi fiber, polydextrose, and cellulose. This review demonstrates that choosing a substrate to selectively enhance a specific SCFA is difficult, and the molar proportion of each SCFA produced by individual substrates may be misleading. Instead the rate and ratio of SCFA production should be evaluated in parallel.


Assuntos
Metabolismo dos Carboidratos , Ácidos Graxos Voláteis/biossíntese , Microbioma Gastrointestinal , Butiratos , Carboidratos , Fibras na Dieta , Fezes , Fermentação , Humanos
3.
Artigo em Inglês | MEDLINE | ID: mdl-33139292

RESUMO

A healthy, intact gut microbiota is often resistant to colonization by gastrointestinal pathogens. During periods of dysbiosis, however, organisms such as Clostridioides difficile can thrive. We describe an optimized in vitro colonization resistance assay for C. difficile in stool (CRACS) and demonstrate the utility of this assay by assessing changes in colonization resistance following antibiotic exposure. Fecal samples were obtained from healthy volunteers (n = 6) and from healthy subjects receiving 5 days of moxifloxacin (n = 11) or no antibiotics (n = 10). Samples were separated and either not manipulated (raw) or sterilized (autoclaved or filtered) prior to inoculation with C. difficile ribotype 027 spores and anaerobic incubation for 72 h. Different methods of storing fecal samples were also investigated in order to optimize the CRACS. In healthy, raw fecal samples, incubation with spores did not lead to increased C. difficile total viable counts (TVCs) or cytotoxin detection. In contrast, increased C. difficile TVCs and cytotoxin detection occurred in sterilized healthy fecal samples or those from antibiotic-treated individuals. The CRACS was functional with fecal samples stored at either 4°C or -80°C but not with those stored with glycerol (12% or 30% [vol/vol]). Our data show that the CRACS successfully models in vitro the loss of colonization resistance and subsequent C. difficile proliferation and toxin production. The CRACS could be used as a proxy for C. difficile infection in clinical studies or to determine if an individual is at risk of developing C. difficile infection or other potential infections occurring due to a loss of colonization resistance.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Antibacterianos/farmacologia , Clostridioides , Infecções por Clostridium/tratamento farmacológico , Voluntários Saudáveis , Humanos
4.
Commun Biol ; 7(1): 272, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443511

RESUMO

Mycoprotein is a fungal-derived ingredient used for meat alternative products whose fungal cell walls are rich in dietary fibre (ß-glucans and chitin) and defines its structure. Several health benefits have been reported after mycoprotein consumption, however, little is known about the impact of mycoprotein fermentation on the gut microbiota. This study aims to identify changes in microbiome composition and microbial metabolites during colonic fermentation of mycoprotein following simulated upper gastrointestinal digestion. Changes in microbial populations and metabolites produced by the fermentation of mycoprotein fibre were investigated and compared to a plant (oat bran) and an animal (chicken) comparator. In this model fermentation system, mycoprotein and oat showed different but marked changes in the microbial population compared to chicken, which showed minimal differentiation. In particular, Bacteroides species known for degrading ß-glucans were found in abundance following fermentation of mycoprotein fibre. Mycoprotein fermentation resulted in short-chain fatty acid production comparable with oat and chicken at 72 h. Significantly higher branched-chain amino acids were observed following chicken fermentation. This study suggests that the colonic fermentation of mycoprotein can promote changes in the colonic microbial profile. These results highlight the impact that the unique structure of mycoprotein can have on digestive processes and the gut microbiota.


Assuntos
Microbioma Gastrointestinal , Microbiota , beta-Glucanas , Animais , Bacteroides , Fermentação , Galinhas
5.
Carbohydr Polym ; 289: 119413, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483834

RESUMO

Targeted colonic drug delivery systems are needed for the treatment of endemic colorectal pathologies, such as Crohn's disease, ulcerative colitis, and colorectal cancer. These drug delivery vehicles are difficult to formulate, as they need to remain structurally intact whilst navigating a wide range of physiological conditions across the upper gastrointestinal tract. In this work we show how starch hydrogel bulk structural and molecular level parameters influence their properties as drug delivery platforms. The in vitro protocols mimic in vivo conditions, accounting for physiological concentrations of gastrointestinal hydrolytic enzymes and salts. The structural changes starch gels undergo along the entire length of the human gastrointestinal tract have been quantified, and related to the materials' drug release kinetics for three different drug molecules, and interactions with the large intestinal microbiota. It has been demonstrated how one can modify their choice of starch in order to fine tune its corresponding hydrogel's pharmacokinetic profile.


Assuntos
Hidrogéis , Amido , Sistemas de Liberação de Medicamentos/métodos , Excipientes , Humanos , Concentração de Íons de Hidrogênio
6.
Biochem Biophys Rep ; 28: 101106, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34458596

RESUMO

Delay in cancer diagnosis often results in metastasis and an inability to successfully treat the tumor. The use of broadly cancer-specific biomarkers at an early stage may improve cancer treatment and staging. This study has explored circulatory exosomal miRNAs as potential diagnostic biomarkers to identify cancer patients. Secretory exosomal miRNAs were isolated from 13 canine cancer cell lines (lymphoma, mast cell tumor, histiocytic cell line, osteosarcoma, melanoma, and breast tumor) and were sequenced by Next-Generation sequencing (NGS). We have identified 6 miRNAs (cfa-miR-9, -1841, -1306, -345, -132, and -26b) by NGS that were elevated in all cancer cell types. The miRNAs identified by NGS were then examined by Q-RT-PCR. The PCR data demonstrated similar expression patterns to those seen with NGS but provided fold differences that were much lower than those seen for NGS. Cfa-miR-9 was found to be the most consistently elevated miRNA in NGS and PCR, making it the most likely miRNA to prove diagnostic. In this study, we have demonstrated that it is possible to identify exosomal miRNAs with elevated secretion across multiple tumor types that could be used as circulatory diagnostic biomarkers for liquid biopsy in the future.

7.
Front Cell Infect Microbiol ; 11: 670935, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277467

RESUMO

Within the human intestinal tract, dietary, microbial- and host-derived compounds are used as signals by many pathogenic organisms, including Clostridioides difficile. Trehalose has been reported to enhance virulence of certain C. difficile ribotypes; however, such variants are widespread and not correlated with clinical outcomes for patients suffering from C. difficile infection (CDI). Here, we make preliminary observations on how trehalose supplementation affects the microbiota in an in vitro model and show that trehalose-induced changes can reduce the outgrowth of C. difficile, preventing simulated CDI. Three clinically reflective human gut models simulated the effects of sugar (trehalose or glucose) or saline ingestion on the microbiota. Models were instilled with sugar or saline and further exposed to C. difficile spores. The recovery of the microbiota following antibiotic treatment and CDI induction was monitored in each model. The human microbiota remodelled to utilise the bioavailable trehalose. Clindamycin induction caused simulated CDI in models supplemented with either glucose or saline; however, trehalose supplementation did not result in CDI, although limited spore germination did occur. The absence of CDI in trehalose model was associated with enhanced abundances of Finegoldia, Faecalibacterium and Oscillospira, and reduced abundances of Klebsiella and Clostridium spp., compared with the other models. Functional analysis of the microbiota in the trehalose model revealed differences in the metabolic pathways, such as amino acid metabolism, which could be attributed to prevention of CDI. Our data show that trehalose supplementation remodelled the microbiota, which prevented simulated CDI, potentially due to enhanced recovery of nutritionally competitive microbiota against C. difficile.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbiota , Antibacterianos/uso terapêutico , Clostridioides , Infecções por Clostridium/tratamento farmacológico , Humanos , Projetos Piloto , Trealose
8.
NPJ Biofilms Microbiomes ; 7(1): 16, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547298

RESUMO

C. difficile infection (CDI) is a worldwide healthcare problem with ~30% of cases failing primary therapy, placing a burden on healthcare systems and increasing patient morbidity. We have little understanding of why these therapies fail. Here, we use a clinically validated in vitro gut model to assess the contribution of biofilms towards recurrent disease and to investigate biofilm microbiota-C. difficile interactions. Initial experiments show that C. difficile cells became associated with the colonic biofilm microbiota and are not depleted by vancomycin or faecal microbiota transplant therapies. We observe that transferring biofilm encased C. difficile cells into a C. difficile naïve but CDI susceptible model induces CDI. Members of the biofilm community can impact C. difficile biofilm formation by acting either antagonistically or synergistically. We highlight the importance of biofilms as a reservoir for C. difficile, which can be a cause for recurrent infections.


Assuntos
Biofilmes/crescimento & desenvolvimento , Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Colo/microbiologia , Idoso , Idoso de 80 Anos ou mais , Técnicas Bacteriológicas , Biofilmes/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/tratamento farmacológico , Colo/efeitos dos fármacos , Transplante de Microbiota Fecal , Humanos , Pessoa de Meia-Idade , Modelos Biológicos , Reinfecção/tratamento farmacológico , Reinfecção/microbiologia , Vancomicina/farmacologia
9.
Front Microbiol ; 11: 578903, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072047

RESUMO

Clostridioides difficile infection (CDI) is a toxin-mediated infection in the gut and a major burden on healthcare facilities worldwide. We rationalized that it would be beneficial to design an antibody therapy that is delivered to, and is active at the site of toxin production, rather than neutralizing the circulating and luminal toxins after significant damage of the layers of the intestines has occurred. Here we describe a highly potent therapeutic, OraCAb, with high antibody titers and a formulation that protects the antibodies from digestion/inactivation in the gastrointestinal tract. The potential of OraCAb to prevent CDI in an in vivo hamster model and an in vitro human colon model was assessed. In the hamster model we optimized the ratio of the antibodies against each of the toxins produced by C. difficile (Toxins A and B). The concentration of immunoglobulins that is effective in a hamster model of CDI was determined. A highly significant difference in animal survival for those given an optimized OraCAb formulation versus an untreated control group was observed. This is the first study testing the effect of oral antibodies for treatment of CDI in an in vitro gut model seeded with a human fecal inoculum. Treatment with OraCAb successfully neutralized toxin production and did not interfere with the colonic microbiota in this model. Also, treatment with a combination of vancomycin and OraCAb prevented simulated CDI recurrence, unlike vancomycin therapy alone. These data demonstrate the efficacy of OraCAb formulation for the treatment of CDI in pre-clinical models.

10.
Nutr Rev ; 78(6): 486-497, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841152

RESUMO

The world's population is expanding, leading to an increased global requirement for dietary protein to support health and adaptation in various populations. Though a strong evidence base supports the nutritional value of animal-derived dietary proteins, mounting challenges associated with sustainability of these proteins have led to calls for the investigation of alternative, non-animal-derived dietary protein sources. Mycoprotein is a sustainably produced, protein-rich, high-fiber, whole food source derived from the fermentation of fungus. Initial investigations in humans demonstrated that mycoprotein consumption can lower circulating cholesterol concentrations. Recent data also report improved acute postprandial glycemic control and a potent satiety effect following mycoprotein ingestion. It is possible that these beneficial effects are attributable to the amount and type of dietary fiber present in mycoprotein. Emerging data suggest that the amino acid composition and bioavailability of mycoprotein may also position it as a promising dietary protein source to support skeletal muscle protein metabolism. Mycoprotein may be a viable dietary protein source to promote training adaptations in athletes and the maintenance of muscle mass to support healthy aging. Herein, current evidence underlying the metabolic effects of mycoprotein is reviewed, and the key questions to be addressed are highlighted.


Assuntos
Fibras na Dieta/farmacologia , Proteínas Alimentares/farmacologia , Proteínas Fúngicas/farmacologia , Músculo Esquelético/efeitos dos fármacos , Peso Corporal , Humanos , Doenças Metabólicas/prevenção & controle , Sarcopenia/prevenção & controle
11.
Nutrients ; 11(4)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965613

RESUMO

Dietary mycoprotein (marketed as QuornTM) has many health benefits, including reductions in energy intake. The majority of studies evaluating mycoprotein focus on the protein content and very few consider the fibre content. Fibre consumption is also associated with decreased energy intake, which is partly attributed to short chain fatty acids (SCFAs) from fibre fermentation by colonic bacteria. To study the SCFA-producing capability of mycoprotein, in vitro batch fermentations were conducted, and SCFA production compared with that from extracted mycoprotein fibre, oligofructose (OF), rhamnose, and laminarin. Mycoprotein and mycoprotein fibre were both fermentable, resulting in a total SCFA production of 24.9 (1.7) and 61.2 (15.7) mmol/L, respectively. OF led to a significantly higher proportion of acetate compared to all other substrates tested (92.6 (2.8)%, p < 0.01). Rhamnose generated the highest proportion of propionate (45.3 (2.0)%, p < 0.01), although mycoprotein and mycoprotein fibre yielded a higher proportion of propionate compared with OF and laminarin. Butyrate proportion was the highest with laminarin (28.0 (10.0)although mycoprotein fibre led to a significantly higher proportion than OF (p < 0.01). Mycoprotein is a valuable source of dietary protein, but its fibre content is also of interest. Further evaluation of the potential roles of the fibre content of mycoprotein is required.


Assuntos
Proteínas de Bactérias/fisiologia , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/biossíntese , Fermentação/fisiologia , Microbioma Gastrointestinal/fisiologia , Colo/metabolismo , Colo/microbiologia , Humanos
12.
Nutrients ; 9(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28045429

RESUMO

Short chain fatty acids (SCFA) are the major products of carbohydrate fermentation by gut bacteria. Different carbohydrates are associated with characteristic SCFA profiles although the mechanisms are unclear. The individual SCFA profile may determine any resultant health benefits. Understanding determinants of individual SCFA production would enable substrate choice to be tailored for colonic SCFA manipulation. To test the hypothesis that the orientation and position of the glycosidic bond is a determinant of SCFA production profile, a miniaturized in vitro human colonic batch fermentation model was used to study a range of isomeric glucose disaccharides. Diglucose α(1-1) fermentation led to significantly higher butyrate production (p < 0.01) and a lower proportion of acetate (p < 0.01) compared with other α bonded diglucoses. Diglucose ß(1-4) also led to significantly higher butyrate production (p < 0.05) and significantly increased the proportions of propionate and butyrate compared with diglucose α(1-4) (p < 0.05). There was no significant effect of glycosidic bond configuration on absolute propionate production. Despite some differences in the SCFA production of different glucose disaccharides, there was no clear relationship between SCFA production and bond configuration, suggesting that other factors may be responsible for promoting selective SCFA production by the gut microbiota from different carbohydrates.


Assuntos
Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Glicosídeos/metabolismo , Acetatos/metabolismo , Adulto , Bactérias/metabolismo , Butiratos/metabolismo , Colo/microbiologia , Fibras na Dieta/metabolismo , Dissacarídeos/metabolismo , Fezes/microbiologia , Feminino , Fermentação , Humanos , Concentração de Íons de Hidrogênio , Masculino , Pessoa de Meia-Idade , Propionatos/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA