Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723750

RESUMO

In Escherichia coli, the master transcription regulator catabolite repressor activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli's central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Frutoquinases/metabolismo , Frutoquinases/genética , Frutose/metabolismo , Frutosedifosfatos/metabolismo , Frutosefosfatos/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
J Virol ; 97(4): e0007323, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022165

RESUMO

Stress-mediated activation of the glucocorticoid receptor (GR) and specific stress-induced transcription factors stimulate herpes simplex virus 1 (HSV-1) productive infection, explant-induced reactivation, and immediate early (IE) promoters that drive expression of infected cell protein 0 (ICP0), ICP4, and ICP27. Several published studies concluded the virion tegument protein VP16, ICP0, and/or ICP4 drives early steps of reactivation from latency. Notably, VP16 protein expression was induced in trigeminal ganglionic neurons of Swiss Webster or C57BL/6J mice during early stages of stress-induced reactivation. If VP16 mediates reactivation, we hypothesized stress-induced cellular transcription factors would stimulate its expression. To address this hypothesis, we tested whether stress-induced transcription factors transactivate a VP16 cis-regulatory module (CRM) located upstream of the VP16 TATA box (-249 to -30). Initial studies revealed the VP16 CRM cis-activated a minimal promoter more efficiently in mouse neuroblastoma cells (Neuro-2A) than mouse fibroblasts (NIH-3T3). GR and Slug, a stress-induced transcription factor that binds enhancer boxes (E-boxes), were the only stress-induced transcription factors examined that transactivated the VP16 CRM construct. GR- and Slug-mediated transactivation was reduced to basal levels when the E-box, two 1/2 GR response elements (GREs), or NF-κB binding site was mutated. Previous studies revealed GR and Slug cooperatively transactivated the ICP4 CRM, but not ICP0 or ICP27. Silencing of Slug expression in Neuro-2A cells significantly reduced viral replication, indicating Slug-mediated transactivation of ICP4 and VP16 CRM activity correlates with enhanced viral replication and reactivation from latency. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latency in several types of neurons. Periodically cellular stressors trigger reactivation from latency. Viral regulatory proteins are not abundantly expressed during latency, indicating cellular transcription factors mediate early stages of reactivation. Notably, the glucocorticoid receptor (GR) and certain stress-induced transcription factors transactivate cis-regulatory modules (CRMs) essential for expression of infected cell protein 0 (ICP0) and ICP4, key viral transcriptional regulatory proteins linked to triggering reactivation from latency. Virion protein 16 (VP16) specifically transactivates IE promoter and was also reported to mediate early stages of reactivation from latency. GR and Slug, a stress-induced enhancer box (E-box) binding protein, transactivate a minimal promoter downstream of VP16 CRM, and these transcription factors occupy VP16 CRM sequences in transfected cells. Notably, Slug stimulates viral replication in mouse neuroblastoma cells suggesting Slug, by virtue of transactivating VP16 and ICP4 CRM sequences, can trigger reactivation in certain neurons.


Assuntos
Proteína Vmw65 do Vírus do Herpes Simples , Herpesvirus Humano 1 , Regiões Promotoras Genéticas , Replicação Viral , Animais , Camundongos , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/fisiologia , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Replicação Viral/genética , Feminino , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Células NIH 3T3 , Latência Viral/genética , Mutação , RNA Interferente Pequeno/metabolismo
3.
J Virol ; 97(10): e0130523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37823644

RESUMO

IMPORTANCE: A correlation exists between stress and increased episodes of human alpha-herpes virus 1 reactivation from latency. Stress increases corticosteroid levels; consequently, the glucocorticoid receptor (GR) is activated. Recent studies concluded that a GR agonist, but not an antagonist, accelerates productive infection and reactivation from latency. Furthermore, GR and certain stress-induced transcription factors cooperatively transactivate promoters that drive the expression of infected cell protein 0 (ICP0), ICP4, and VP16. This study revealed female mice expressing a GR containing a serine to alanine mutation at position 229 (GRS229A) shed significantly lower levels of infectious virus during explant-induced reactivation compared to male GRS229A or wild-type parental C57BL/6 mice. Furthermore, female GRS229A mice contained fewer VP16 + TG neurons compared to male GRS229A mice or wild-type mice during the early stages of explant-induced reactivation from latency. Collectively, these studies revealed that GR transcriptional activity has female-specific effects, whereas male mice can compensate for the loss of GR transcriptional activation.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Receptores de Glucocorticoides , Ativação Viral , Animais , Feminino , Masculino , Camundongos , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Gânglio Trigeminal , Ubiquitina-Proteína Ligases/metabolismo , Ativação Viral/genética , Latência Viral/genética
4.
FASEB J ; 37(2): e22731, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583714

RESUMO

Primary sclerosing cholangitis (PSC) is a chronic liver disease characterized by inflammatory responses and fibrotic scar formation leading to cholestasis. Ductular reaction and liver fibrosis are typical liver changes seen in human PSC and cholestasis patients. The current study aimed to clarify the role of liver-specific microRNA-34a in the cholestasis-associated ductular reaction and liver fibrosis. We demonstrated that miR-34a expression was significantly increased in human PSC livers along with the enhanced ductular reaction, cellular senescence, and liver fibrosis. A liver-specific miR-34a knockout mouse was established by crossing floxed miR-34a mice with albumin-promoter-driven Cre mice. Bile duct ligation (BDL) induced liver injury characterized by necrosis, fibrosis, and immune cell infiltration. In contrast, liver-specific miR-34a knockout in BDL mice resulted in decreased biliary ductular pathology associated with the reduced cholangiocyte senescence and fibrotic responses. The miR-34a-mediated ductular reactions may be functioning through Sirt-1-mediated senescence and fibrosis. The hepatocyte-derived conditioned medium promoted LPS-induced fibrotic responses and senescence in cholangiocytes, and miR-34a inhibitor suppressed these effects, further supporting the involvement of paracrine regulation. In conclusion, we demonstrated that liver-specific miR-34a plays an important role in ductular reaction and fibrotic responses in a BDL mouse model of cholestatic liver disease.


Assuntos
Colestase , Hepatopatias , MicroRNAs , Humanos , Camundongos , Animais , Fígado/metabolismo , Cirrose Hepática/metabolismo , Colestase/genética , Colestase/patologia , Ductos Biliares/cirurgia , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Fibrose , Hepatopatias/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
5.
J Cell Mol Med ; 27(7): 891-905, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36716094

RESUMO

Gulf War Illness (GWI) has been reported in 25%-35% of veterans returned from the Gulf war. Symptoms of GWI are varied and include both neurological and gastrointestinal symptoms as well as chronic fatigue. Development of GWI has been associated with chemical exposure particularly with exposure to pyridostigmine bromide (PB) and permethrin. Recent studies have found that the pathology of GWI is connected to changes in the gut microbiota, that is the gut dysbiosis. In studies using animal models, the exposure to PB and permethrin resulted in similar changes in the gut microbiome as these found in GW veterans with GWI. Studies using animal models have also shown that phytochemicals like curcumin are beneficial in reducing the symptoms and that the extracellular vesicles (EV) released from gut bacteria and from the intestinal epithelium can both promote diseases and suppress diseases through the intercellular communication mechanisms. The intestinal epithelium cells produce EVs and these EVs of intestinal epithelium origin are found to suppress inflammatory bowel disease severity, suggesting the benefits of utilizing EV in treatments. On the contrary, EV from the plasma of septic mice enhanced the level of proinflammatory cytokines in vitro and neutrophils and macrophages in vivo, suggesting differences in the EV depending on the types of cells they were originated and/or influences of environmental changes. These studies suggest that targeting the EV that specifically have positive influences may become a new therapeutic strategy in the treatment of veterans with GWI.


Assuntos
Microbioma Gastrointestinal , Síndrome do Golfo Pérsico , Camundongos , Animais , Permetrina , Disbiose , Guerra do Golfo , Síndrome do Golfo Pérsico/microbiologia , Brometo de Piridostigmina , Modelos Animais de Doenças
6.
J Virol ; 96(23): e0101022, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36416585

RESUMO

Bovine herpesvirus 1 (BoHV-1), an important pathogen of cattle, establishes lifelong latency in sensory neurons within trigeminal ganglia (TG) after acute infection. The BoHV-1 latency-reactivation cycle, like other alphaherpesvirinae subfamily members, is essential for viral persistence and transmission. Notably, cells within pharyngeal tonsil (PT) also support a quiescent or latent BoHV-1 infection. The synthetic corticosteroid dexamethasone, which mimics the effects of stress, consistently induces BoHV-1 reactivation from latency allowing early stages of viral reactivation to be examined in the natural host. Based on previous studies, we hypothesized that stress-induced cellular factors trigger expression of key viral transcriptional regulatory genes. To explore this hypothesis, RNA-sequencing studies compared viral gene expression in PT during early stages of dexamethasone-induced reactivation from latency. Strikingly, RNA encoding infected cell protein 4 (bICP4), which is translated into an essential viral transcriptional regulatory protein, was detected 30 min after dexamethasone treatment. Ninety minutes after dexamethasone treatment bICP4 and, to a lesser extent, bICP0 RNA were detected in PT. All lytic cycle viral transcripts were detected within 3 h after dexamethasone treatment. Surprisingly, the latency related (LR) gene, the only viral gene abundantly expressed in latently infected TG neurons, was not detected in PT during latency. In TG neurons, bICP0 and the viral tegument protein VP16 are expressed before bICP4 during reactivation, suggesting distinct viral regulatory genes mediate reactivation from latency in PT versus TG neurons. Finally, these studies confirm PT is a biologically relevant site for BoHV-1 latency, reactivation from latency, and virus transmission. IMPORTANCE BoHV-1, a neurotropic herpesvirus, establishes, maintains, and reactivates from latency in neurons. BoHV-1 DNA is also detected in pharyngeal tonsil (PT) from latently infected calves. RNA-sequencing studies revealed the viral infected cell protein 4 (bICP4) RNA was expressed in PT of latently infected calves within 30 min after dexamethasone was used to initiate reactivation. As expected, bICP4 RNA was not detected during latency. All lytic cycle viral genes were expressed within 3 h after dexamethasone treatment. Conversely, bICP0 and the viral tegument protein VP16 are expressed prior to bICP4 in trigeminal ganglionic neurons during reactivation. The viral latency related gene, which is abundantly expressed in latently infected neurons, was not abundantly expressed in PT during latency. These studies provide new evidence PT is a biologically relevant site for BoHV-1 latency and reactivation. Finally, we predict other alphaherpesvirinae subfamily members utilize PT as a site for latency and reactivation.


Assuntos
Tonsila Faríngea , Infecções por Herpesviridae , Herpesvirus Bovino 1 , Proteínas do Envelope Viral , Ativação Viral , Animais , Bovinos , Tonsila Faríngea/virologia , Dexametasona/farmacologia , Etoposídeo/farmacologia , Herpesvirus Bovino 1/fisiologia , RNA/metabolismo , Gânglio Trigeminal , Proteínas Virais/genética , Proteínas Virais/metabolismo , Latência Viral , Proteínas do Envelope Viral/metabolismo
7.
J Virol ; 96(17): e0108122, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35975996

RESUMO

Following acute infection, herpes simplex virus 1 (HSV-1) establishes lifelong latency in neurons. The latency associated transcript (LAT) is the only viral gene abundantly expressed during latency. Wild-type (WT) HSV-1 reactivates more efficiently than LAT mutants because LAT promotes establishment and maintenance of latency. While sensory neurons in trigeminal ganglia (TG) are important sites for latency, brainstem is also a site for latency and reactivation from latency. The principal sensory nucleus of the spinal trigeminal tract (Pr5) likely harbors latent HSV-1 because it receives afferent inputs from TG. The locus coeruleus (LC), an adjacent brainstem region, sends axonal projections to cortical structures and is indirectly linked to Pr5. Senescent cells accumulate in the nervous system during aging and accelerate neurodegenerative processes. Generally senescent cells undergo irreversible cell cycle arrest and produce inflammatory cytokines and chemokines. Based on these observations, we hypothesized HSV-1 influences senescence and inflammation in Pr5 and LC of latently infected mice. This hypothesis was tested using a mouse model of infection. Strikingly, female but not age-matched male mice latently infected with a LAT null mutant (dLAT2903) exhibited significantly higher levels of senescence markers and inflammation in LC, including cell cycle inhibitor p16, NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), IL-1α, and IL-ß. Conversely, Pr5 in female but not male mice latently infected with WT HSV-1 or dLAT2903 exhibited enhanced expression of important inflammatory markers. The predilection of HSV-1 to induce senescence and inflammation in key brainstem regions of female mice infers that enhanced neurodegeneration occurs. IMPORTANCE HSV-1 (herpes simplex virus 1), an important human pathogen, establishes lifelong latency in neurons in trigeminal ganglia and the central nervous system. In contrast to productive infection, the only viral transcript abundantly expressed in latently infected neurons is the latency associated transcript (LAT). The brainstem, including principal sensory nucleus of the spinal trigeminal tract (Pr5) and locus coeruleus (LC), may expedite HSV-1 spread from trigeminal ganglia to the brain. Enhanced senescence and expression of key inflammatory markers were detected in LC of female mice latently infected with a LAT null mutant (dLAT2903) relative to age-matched male or female mice latently infected with wild-type HSV-1. Conversely, wild-type HSV-1 and dLAT2903 induced higher levels of senescence and inflammatory markers in Pr5 of latently infected female mice. In summary, enhanced inflammation and senescence in LC and Pr5 of female mice latently infected with HSV-1 are predicted to accelerate neurodegeneration.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Doenças Neuroinflamatórias , Animais , Tronco Encefálico/virologia , Senescência Celular , Feminino , Herpes Simples/patologia , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 1/fisiologia , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos NOD , Doenças Neuroinflamatórias/virologia , Gânglio Trigeminal/virologia , Latência Viral
8.
J Virol ; 96(5): e0213021, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35019726

RESUMO

Acute infection of the ocular, oral, or nasal cavity by bovine herpesvirus 1 (BoHV-1) culminates in lifelong latency in sensory neurons within trigeminal ganglia. The BoHV-1 latency reactivation cycle, including calves latently infected with commercially available modified live vaccines, can lead to reproductive complications, including abortions. Recent studies demonstrated progesterone stimulated BoHV-1 productive infection and sporadically induced reactivation from latency in male rabbits. The progesterone receptor (PR) and progesterone transactivate the immediate early transcription unit 1 (IEtu1) promoter and the infected cell protein 0 (bICP0) early promoter. These viral promoters drive expression of two viral transcriptional regulatory proteins (bICP0 and bICP4) that are crucial for productive infection. Based on these observations, we hypothesize that progesterone induces reactivation in a subset of calves latently infected with BoHV-1. These studies demonstrated progesterone was less efficient than dexamethasone at initiating reactivation from latency in female calves. Notably, heat stress correlated with enhancing the ability of progesterone to induce reactivation from latency. Previous studies demonstrated that heat stress activates the glucocorticoid receptor (GR), which suggested GR activation augments progesterone-mediated reactivation from latency. Additional studies revealed GR and PR cooperatively stimulated productive infection and synergistically transactivated the IEtu1 promoter when cultures were treated with dexamethasone. Mutating one or both GR binding sites in the IEtu1 promoter blocked transactivation. Collectively, these studies indicated that progesterone intermittently triggered reactivation from latency, and heat stress augmented reactivation from reactivation. Finally, these studies suggest progesterone enhances virus spread in tissues and cells where PR is abundantly expressed. IMPORTANCE Steroid hormone fluctuations are predicted to enhance or initiate bovine herpesvirus 1 (BoHV-1) replication and virus spread in cattle. For example, stress increases the incidence of BoHV-1 reactivation from latency in cattle, and the synthetic corticosteroid dexamethasone consistently induces reactivation from latency. The glucocorticoid receptor (GR) and dexamethasone stimulate key viral regulatory promoters and productive infection, in part because the viral genome contains numerous consensus GR-responsive elements (GREs). The progesterone receptor (PR) and GR belong to the type I nuclear hormone receptor family. PR and progesterone specifically bind to and transactivate viral promoters that contain GREs and stimulate BoHV-1 productive infection. Although progesterone did not induce reactivation from latency in female calves as efficiently as dexamethasone, heat stress enhanced progesterone-mediated reactivation from latency. Consequently, we predict that low levels of stressful stimuli can cooperate with progesterone to induce reactivation from latency or promote virus spread.


Assuntos
Infecções por Herpesviridae , Herpesvirus Bovino 1 , Progesterona , Animais , Bovinos , Dexametasona/farmacologia , Feminino , Resposta ao Choque Térmico , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/fisiologia , Masculino , Progesterona/farmacologia , Coelhos , Receptores de Glucocorticoides/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos
9.
FASEB J ; 36(1): e22125, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958687

RESUMO

Aging is associated with gradual changes in liver structure and physiological/pathological functions in hepatic cells including hepatocytes, cholangiocytes, Kupffer cells, hepatic stellate cells (HSCs), and liver sinusoidal endothelial cells (LSECs). LSECs are specialized hepatic endothelial cells that regulate liver homeostasis. These cells actively impact the hepatic microenvironment as they have fenestrations and a thin morphology to allow substance exchange between circulating blood and the liver tissue. As aging occurs, LSECs have a reduction in both the number and size of fenestrations, which is referred to as pseudocapillarization. This along with the aging of the liver leads to increased oxidative stress, decreased availability of nitric oxide, decreased hepatic blood flow, and increased inflammatory cytokines in LSECs. Vascular aging can also lead to hepatic hypoxia, HSC activation, and liver fibrosis. In this review, we described the basic structure of LSECs, and the effect of LSECs on hepatic inflammation and fibrosis during aging process. We briefly summarized the changes of hepatic microcirculation during liver inflammation, the effect of aging on the clearance function of LSECs, the interactions between LSECs and immunity, hepatocytes or other hepatic nonparenchymal cells, and the therapeutic intervention of liver diseases by targeting LSECs and vascular system. Since LSECs play an important role in the development of liver fibrosis and the changes of LSEC phenotype occur in the early stage of liver fibrosis, the study of LSECs in the fibrotic liver is valuable for the detection of early liver fibrosis and the early intervention of fibrotic response.


Assuntos
Envelhecimento , Endotélio Vascular/metabolismo , Hipóxia , Cirrose Hepática , Fígado , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Doença Crônica , Humanos , Hipóxia/metabolismo , Hipóxia/patologia , Fígado/irrigação sanguínea , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia
10.
Exp Eye Res ; 218: 109017, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35240194

RESUMO

Following acute infection, herpes simplex virus type 1 (HSV-1) establishes life-long latency in sensory and other neurons. Recurrent ocular HSV-1 outbreaks are generally due to reactivation from latency. The HSV-1 latency-reactivation cycle is a complex virus-host relationship. The viral encoded latency-associated transcript (LAT) is abundantly expressed in latency and encodes several micro-RNAs and other small non-coding RNAs, which may regulate expression of key viral and cellular genes. Certain cellular signaling pathways, including Wnt/ß-catenin and mTOR pathway, mediate certain aspect of the latency-reactivation cycle. Stress, via activation of the glucocorticoid receptor and other stress induced cellular transcription factors, are predicted to trigger reactivation from latency by stimulating viral gene expression and impairing immune responses and inflammation. These observations suggest stress and certain cellular signaling pathways play key roles in regulating the latency-reactivation cycle and recurrent ocular disease.


Assuntos
Oftalmopatias , Herpesvirus Humano 1 , MicroRNAs , Herpesvirus Humano 1/fisiologia , Humanos , MicroRNAs/genética , Transdução de Sinais , Latência Viral/genética
11.
J Vet Med Educ ; 49(2): 151-163, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34010117

RESUMO

The Deaf and hard of hearing (DHH) population suffers disproportionately from barriers to health care access. Progress has been made toward improving access to medical care in the human health field; however, the veterinary field has not yet implemented similar standards. More research is needed to improve access to veterinary care for disabled individuals. This systematic review aimed to evaluate all primary research articles pertaining to medical and veterinary health care access for DHH adults in the United States. Its purpose was to assess gaps in knowledge regarding DHH persons' access to veterinary care. The review includes 39 articles related to DHH access to medical care and 6 articles related to general access to veterinary care. The authors found no articles related specifically to DHH access to veterinary care nor any articles on disability accessibility to veterinary care that met the inclusion criteria. Results outline significant barriers to DHH persons' access to health care, unique needs specific for this population of patients, and recommendations to improve access to medical care for individuals who identify as DHH. The results also suggest that further research is needed to investigate barriers to veterinary care experienced by DHH pet owners, the unique needs of this population of pet owners, and how the field of veterinary medicine can better accommodate those needs.


Assuntos
Pessoas com Deficiência , Acessibilidade aos Serviços de Saúde , Perda Auditiva , Hospitais Veterinários , Pessoas com Deficiência Auditiva , Animais , Humanos , Propriedade , Animais de Estimação , Estados Unidos
12.
J Trauma Nurs ; 29(3): 158-162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35536345

RESUMO

BACKGROUND: Data validation is important in maintaining the high-quality data necessary for trauma programs and research. Most existing guidance focuses on trauma center-level data validation, but validation from a broader level (region, state) may also be a helpful tool. OBJECTIVE: The purpose of this project is to improve data collection and submission at the local, regional, and state levels by performing logic-based data validation. METHODS: Logic edits were identified and accuracy rates were tracked quarterly, as measures were taken to improve accuracy. Following completion of Phase 1 of validation, Phase 2 was initiated to include both new fields and fields from Phase 1 that did not meet the accuracy goal. Data from Phase 2 were then compared with data from the state trauma registry. RESULTS: In both Phase 1 and Phase 2, five of the seven data fields validated reached 90% accuracy by the end of the respective project phase. The project facilitated registrar education and pursuit of data collection solutions in registry software. Systemic issues were identified at a higher level that had not been noticed at the trauma center level. DISCUSSION: Robust data validation is critical for an accurate trauma registry. Engaging higher-level organizations, like trauma regions, provides new perspective in data validation. CONCLUSION: This regional data validation approach provided additional value beyond usual center-level data validation.


Assuntos
Centros de Traumatologia , Coleta de Dados , Humanos , Sistema de Registros
13.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30971470

RESUMO

Herpes simplex virus 1 (HSV-1) establishes lifelong latent infections in neurons. Reactivation from latency can lead to serious recurrent disease, including stromal keratitis, corneal scarring, blindness, and encephalitis. Although numerous studies link stress to an increase in the incidence of reactivation from latency and recurrent disease, the mechanism of action is not well understood. We hypothesized that stress, via corticosteroid-mediated activation of the glucocorticoid receptor (GR), stimulates viral gene expression and productive infection during reactivation from latency. Consequently, we tested whether GR activation by the synthetic corticosteroid dexamethasone influenced virus shedding during reactivation from latency using trigeminal ganglion (TG) explants from Swiss Webster mice latently infected with HSV-1, strain McKrae. TG explants from the latently infected mice shed significantly higher levels of virus when treated with dexamethasone. Conversely, virus shedding from TG explants was significantly impaired when they were incubated with medium containing a GR-specific antagonist (CORT-108297) or stripped fetal bovine serum, which lacks nuclear hormones and other growth factors. TG explants from latently infected, but not uninfected, TG contained significantly more GR-positive neurons following explant when treated with dexamethasone. Strikingly, VP16 protein expression was detected in TG neurons at 8 hours after explant whereas infected-cell protein 0 (ICP0) and ICP4 protein expression was not readily detected until 16 hours after explant. Expression of all three viral regulatory proteins was stimulated by dexamethasone. These studies indicated corticosteroid-mediated GR activation increased the number of TG neurons expressing viral regulatory proteins, which enhanced virus shedding during explant-induced reactivation from latency.IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latent infections in neurons within trigeminal ganglia (TG); periodically, reactivation from latency occurs, leading to virus transmission and recurrent disease. Chronic or acute stress increases the frequency of reactivation from latency; how this occurs is not well understood. Here, we demonstrate that the synthetic corticosteroid dexamethasone stimulated explant-induced reactivation from latency. Conversely, a glucocorticoid receptor (GR) antagonist significantly impaired reactivation from latency, indicating that GR activation stimulated explant-induced reactivation. The viral regulatory protein VP16 was readily detected in TG neurons prior to infected-cell protein 0 (ICP0) and ICP4 during explant-induced reactivation. Dexamethasone induced expression of all three viral regulatory proteins following TG explant. Whereas the immunosuppressive properties of corticosteroids would facilitate viral spread during reactivation from latency, these studies indicate GR activation increases the number of TG neurons that express viral regulatory proteins during early stages of explant-induced reactivation.


Assuntos
Herpesvirus Humano 1/fisiologia , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/metabolismo , Latência Viral/efeitos dos fármacos , Latência Viral/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Regulação Viral da Expressão Gênica , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Herpesvirus Humano 1/genética , Proteínas Imediatamente Precoces/metabolismo , Camundongos , Neurônios/virologia , Estresse Fisiológico , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ativação Viral/genética , Ativação Viral/fisiologia , Latência Viral/genética , Eliminação de Partículas Virais
14.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30602606

RESUMO

Following acute infection, herpes simplex virus 1 (HSV-1) establishes lifelong latency in neurons. Physical, emotional, and chemical stresses are linked to increasing the incidence of reactivation from latency, but the mechanism of action is not well understood. In general, stress increases corticosteroid levels, leading to activation of the glucocorticoid receptor (GR), a pioneer transcription factor. Consequently, we hypothesized that stress-mediated activation of the GR can stimulate productive infection and viral gene expression. New studies demonstrated that the GR-specific antagonist (CORT-108297) significantly reduced HSV-1 productive infection in mouse neuroblastoma cells (Neuro-2A). Additional studies demonstrated that the activated GR and Krüppel-like transcription factor 15 (KLF15) cooperatively transactivated the infected cell protein 0 (ICP0) promoter, a crucial viral regulatory protein. Interestingly, the synthetic corticosteroid dexamethasone and GR or KLF15 alone had little effect on ICP0 promoter activity in transfected Neuro-2A or Vero cells. Chromatin immunoprecipitation (ChIP) studies revealed that the GR and KLF15 occupied ICP0 promoter sequences important for transactivation at 2 and 4 h after infection; however, binding was not readily detected at 6 h after infection. Similar results were obtained for cells transfected with the full-length ICP0 promoter. ICP0 promoter sequences lack a consensus "whole" GR response element (GRE) but contain putative half-GREs that were important for dexamethasone induced promoter activity. The activated GR stimulates expression of, and interacts with, KLF15; consequently, these data suggest KLF15 and the GR form a feed-forward loop that activates viral gene expression and productive infection following stressful stimuli.IMPORTANCE The ability of herpes simplex virus 1 (HSV-1) to periodically reactivate from latency results in virus transmission and recurrent disease. The incidence of reactivation from latency is increased by chronic or acute stress. Stress increases the levels of corticosteroids, which bind and activate the glucocorticoid receptor (GR). Since GR activation is an immediate early response to stress, we tested whether the GR influences productive infection and the promoter that drives infected cell protein 0 (ICP0) expression. Pretreatment of cells with a GR-specific antagonist (CORT-108297) significantly reduced virus replication. Although the GR had little effect on ICP0 promoter activity alone, the Krüppel-like transcription factor 15 (KLF15) cooperated with the GR to stimulate promoter activity in transfected cells. In transfected or infected cells, the GR and KLF15 occupied ICP0 sequences important for transactivation. Collectively, these studies provide insight into how stress can directly stimulate productive infection and viral gene expression.


Assuntos
Herpesvirus Humano 1/patogenicidade , Proteínas Imediatamente Precoces/genética , Fatores de Transcrição Kruppel-Like/genética , Regiões Promotoras Genéticas/genética , Receptores de Glucocorticoides/metabolismo , Ativação Transcricional/genética , Ubiquitina-Proteína Ligases/genética , Animais , Sítios de Ligação/genética , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Imunoprecipitação da Cromatina/métodos , Regulação Viral da Expressão Gênica/genética , Herpes Simples/metabolismo , Herpes Simples/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/genética , Camundongos , Elementos de Resposta/genética , Células Vero , Proteínas Virais/genética , Ativação Viral/genética , Latência Viral/genética
15.
Vet Surg ; 43(1): 38-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24279460

RESUMO

OBJECTIVE: To evaluate the applicability of single-incision laparoscopic ovariectomy (SILOVE) in cats using a single-incision laparoscopic port (SILP); to compare surgical time, complications, and postoperative pain after SILOVE using a LigaSure (SILOVE-LS) or extracorporeal suture (SILOVE-ECS), and open ovariectomy (open-OVE). STUDY DESIGN: Randomized, blinded, prospective study. ANIMALS: Healthy, domestic female cats (n = 24). METHODS: Cats underwent physical examination, packed cell volume, total solids and blood urea nitrogen analysis. Cats were randomly assigned to 1 of 3 groups: SILOVE-LS (n = 8), SILOVE-ECS (8) or open-OVE (8). Surgical time, complications, and postoperative pain scores were recorded. RESULTS: Single-incision laparoscopic ovariectomy was successful in (n = 8) SILOVE-LS cats and (n = 5) SILOVE-ECS cats. Surgical time was significantly longer for the SILOVE-ECS group compared with the SILOVE-LS (P < .0001) and open-OVE (P < .0001) groups, which were not different (P = .55). Complications were more frequent in the SILOVE-ECS group and removal of the SILP was required to complete ovariectomy in 3 cats. Cumulative 4-hour pain scores were not different between groups. CONCLUSIONS: Single-incision laparoscopic ovariectomy using a SILP is a feasible method for OVE in cats. Single-incision laparoscopic ovariectomy using an extracorporeal suture is more time consuming and associated with more complications than either the SILOVE-LS or open-OVE methods.


Assuntos
Doenças do Gato/cirurgia , Laparoscopia/veterinária , Ovariectomia/veterinária , Técnicas de Sutura/veterinária , Animais , Gatos/cirurgia , Feminino , Laparoscopia/métodos , Ovariectomia/métodos , Ovário/cirurgia , Dor Pós-Operatória/veterinária
16.
Virus Res ; 347: 199420, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38880336

RESUMO

Human alphaherpesvirus 1 (HSV-1) establishes life-long latency in sensory neurons in trigeminal ganglia (TG), brainstem neurons, and other CNS neurons. Two important segments of the brainstem were examined in this study: principal sensory nucleus of the spinal trigeminal tract (Pr5) because it receives direct afferent inputs from TG, and locus coeruleus (LC) because it is indirectly connected to Pr5 and LC sends axonal projections to cortical structures, which may facilitate viral spread from brainstem to the brain. The only viral gene abundantly expressed during latency is the latency associated transcript (LAT). Previous studies revealed 8-week old female C57Bl/6 mice infected with a LAT null mutant (dLAT2903) versus wild-type (wt) HSV-1 exhibit higher levels of senescence markers and inflammation in LC of females. New studies revealed 1-year old mice latently infected with wt HSV-1 or dLAT2903 contained differences in neuroinflammation and senescence in Pr5 and LC versus young mice. In summary, these studies confirm HSV-1 promotes neuro-inflammation in the brainstem, which may accelerate neurodegenerative disease.


Assuntos
Tronco Encefálico , Herpesvirus Humano 1 , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Latência Viral , Animais , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/genética , Tronco Encefálico/virologia , Tronco Encefálico/patologia , Camundongos , Feminino , Doenças Neuroinflamatórias/virologia , Doenças Neuroinflamatórias/patologia , Herpes Simples/virologia , Herpes Simples/patologia , Envelhecimento , Humanos , Infecção Latente/virologia , Gânglio Trigeminal/virologia , Modelos Animais de Doenças
17.
Antiviral Res ; 225: 105870, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556059

RESUMO

Following acute human alphaherpesvirus 1 (HSV-1) infection of oral-facial mucosal surfaces, sensory neurons in trigeminal ganglia (TG) are important sites for life-long latency. Neurons in the central nervous system, including brainstem, also harbor viral genomes during latency. Periodically, certain cellular stressors trigger reactivation from latency, which can lead to recurrent HSV-1 disease: herpes labialis, herpes stromal keratitis, and encephalitis for example. Activation of the glucocorticoid receptor (GR) by stressful stimuli enhances HSV-1 gene expression, replication, and explant-induced reactivation. GR and certain stress-induced Krüppel like factors (KLF) cooperatively transactivate cis-regulatory modules (CRM) that drive expression of viral transcriptional regulatory proteins (ICP0, ICP4, and ICP27). These CRMs lack GR response elements (GRE); however, specificity protein 1 (Sp1) binding sites are crucial for GR and KLF15 or KLF4 mediated transactivation. Hence, we tested whether Sp1 or Sp3 regulate viral replication and transactivation of the ICP0 promoter. During early stages of explant-induced reactivation from latency, the number of Sp3+ TG neurons were significantly higher relative to TG from latently infected mice. Conversely, Sp1+ TG neurons were only increased in females, but not male mice, during explant-induced reactivation. Sp1 siRNA significantly reduced HSV-1 replication in cultured mouse (Neuro-2A) and monkey (CV-1) cells. Mithramycin A, an antibiotic that has anti-tumor activity preferentially interacts with GC-rich DNA, including Sp1 binding sites, significantly reduced HSV-1 replication indicating it has antiviral activity. GR and Sp1 or Sp3 transactivated the HSV-1 ICP0 promoter in Neuro-2A and CV-1 cells confirming these transcription factors enhance viral replication and gene expression.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Plicamicina/análogos & derivados , Feminino , Humanos , Camundongos , Animais , Herpesvirus Humano 1/genética , Receptores de Glucocorticoides/metabolismo , Ativação Viral , Latência Viral/genética , Proteínas Imediatamente Precoces/genética , Antibacterianos , Ubiquitina-Proteína Ligases/genética
18.
Infect Immun ; 81(12): 4470-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24060976

RESUMO

Shigellosis is an important disease in the developing world, where about 90 million people become infected with Shigella spp. each year. We previously demonstrated that the type three secretion apparatus (T3SA) proteins IpaB and IpaD are protective antigens in the mouse lethal pulmonary model. In order to simplify vaccine formulation and process development, we have evaluated a vaccine design that incorporates both of these previously tested Shigella antigens into a single polypeptide chain. To determine if this fusion protein (DB fusion) retains the antigenic and protective capacities of IpaB and IpaD, we immunized mice with the DB fusion and compared the immune response to that elicited by the IpaB/IpaD combination vaccine. Purification of the DB fusion required coexpression with IpgC, the IpaB chaperone, and after purification it maintained the highly α-helical characteristics of IpaB and IpaD. The DB fusion also induced comparable immune responses and retained the ability to protect mice against Shigella flexneri and S. sonnei in the lethal pulmonary challenge. It also offered limited protection against S. dysenteriae challenge. Our results show the feasibility of generating a protective Shigella vaccine comprised of the DB fusion.


Assuntos
Proteínas de Bactérias/imunologia , Disenteria Bacilar/imunologia , Disenteria Bacilar/prevenção & controle , Proteínas Recombinantes de Fusão/imunologia , Vacinas contra Shigella/imunologia , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/genética , Feminino , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/genética , Shigella dysenteriae/imunologia , Shigella flexneri/imunologia , Shigella sonnei/imunologia , Vacinas Sintéticas/imunologia
19.
Parasit Vectors ; 16(1): 144, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37106346

RESUMO

BACKGROUND: This retrospective study evaluated modified three-dose melarsomine treatment protocols in a shelter setting and compared them to the American Heartworm Society (AHS)-recommended protocol. METHODS: As compared with the AHS protocol, the shelter protocols utilized doxycycline 10 mg/kg once daily (SID) or twice daily (BID), and varied the time from initiation of doxycycline (day 1) to the first melarsomine injection (M1). Dogs were retrospectively grouped based on the shelter's current protocol (M1 on day 14; Group A) and the AHS protocol (M1 on day 60; Group C), allowing a week on either side of the target M1 day. Treatments that fell outside these ranges formed two additional treatment groups (Groups B and D). Respiratory complications were defined as respiratory signs requiring additional treatment, and were statistically compared for Groups A and C. New respiratory signs and gastrointestinal (GI) signs were compared between dogs receiving SID or BID doxycycline. RESULTS: One hundred fifty-seven dogs with asymptomatic or mild heartworm disease at presentation were included. All dogs survived to discharge. There was no statistically significant difference between Groups A (n = 79) and C (n = 27) for new respiratory signs post-melarsomine (P = 0.73). The time to M1 for 14 dogs that developed new respiratory signs was a median of 19 days, compared with 22 days for 143 dogs without new respiratory signs (P = 0.2). Respiratory complications post-melarsomine were uncommon. New respiratory signs post-melarsomine occurred in 10/109 (9.2%) dogs receiving SID doxycycline and 4/48 (8.3%) dogs receiving BID doxycycline (P > 0.999). GI signs prior to M1 were recorded for 40/109 (36.7%) dogs receiving SID doxycycline and 25/48 (52.1%) receiving BID doxycycline (P = 0.08). Forty-four follow-up antigen test results were available; all tests performed > 3 months after the third melarsomine injection were negative. CONCLUSIONS: This study provided support for initiating melarsomine after 14 days of doxycycline and for a lower doxycycline dose. Shorter and less expensive treatment protocols can increase lifesaving capacity and improve quality of life for shelter dogs by reducing the duration of exercise restriction and length of stay.


Assuntos
Dirofilaria immitis , Dirofilariose , Doenças do Cão , Filaricidas , Cães , Animais , Doxiciclina/uso terapêutico , Estudos Retrospectivos , Qualidade de Vida , Doenças do Cão/tratamento farmacológico , Filaricidas/efeitos adversos , Dirofilariose/tratamento farmacológico
20.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168282

RESUMO

In Escherichia coli, the master transcription regulator Catabolite Repressor Activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. The ΔfruK strain also alters biofilm formation. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA