Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892322

RESUMO

Estrogen (17ß-estradiol) deficiency post-menopause alters bone homeostasis whereby bone resorption by osteoclasts exceeds bone formation by osteoblasts, leading to osteoporosis in females. We established an in vitro model to examine the consequences of estrogen withdrawal (E2-WD) on osteoclasts derived from the mouse macrophage RAW 264.7 cell line and utilized it to investigate the mechanism behind the enhanced osteoclast activity post-menopause. We found that a greater population of osteoclasts that underwent E2-WD contained a podosome belt necessary for osteoclasts to adhere and resorb bone and possessed elevated resorptive activity compared to osteoclasts exposed to estrogen (E2) continuously. Our results show that compared to osteoclasts that received E2 continuously, those that underwent E2-WD had a faster rate of microtubule (MT) growth, reduced RhoA activation, and shorter podosome lifespan. Thus, altered podosome and MT dynamics induced by the withdrawal of estrogen supports podosome belt assembly/stability in osteoclasts, which may explain their enhanced bone resorption activity.


Assuntos
Reabsorção Óssea , Estrogênios , Osteoclastos , Animais , Osteoclastos/metabolismo , Osteoclastos/citologia , Camundongos , Células RAW 264.7 , Estrogênios/metabolismo , Estrogênios/farmacologia , Reabsorção Óssea/metabolismo , Podossomos/metabolismo , Microtúbulos/metabolismo , Feminino , Proteína rhoA de Ligação ao GTP/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Técnicas de Cultura de Células
2.
J Cell Sci ; 133(12)2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32501286

RESUMO

The mechanism and role of transient F-actin recruitment, or F-actin 'flashes', on phagosomes remains enigmatic. Here we provide a comprehensive characterization of F-actin flashing dynamics on phagosomes, including receptor and signaling involvement. F-actin flashes predominate during the integrin-driven complement receptor (CR)-mediated phagocytosis. F-actin flashes begin shortly after internalization and persist on phagosomes for approximately 3 minutes before disassembling and reassembling several times within the first hour. Strikingly, the appearance of F-actin flashes on phagosomes coincides with morphological deformation, lysis and occasional fission of internalized red blood cells. The cadence of flashes depends on particle stiffness, and the F-actin networks on phagosomes are enriched in mechanosensitive components including focal adhesion proteins, RhoA and actomyosin. Inhibiting Arp2/3 and myosin IIA activity significantly reduces the frequency at which phagosome cargo becomes deformed during transient F-actin accumulation. At later time points, post-F-actin flashing, enhanced degradation of phagosome contents is observed, compared with non-flashing phagosomes. Taken together, these data suggest that actomyosin-driven phagosome contractions serve to disrupt malleable particles physically, a process akin to mastication, to enhance later enzymatic digestion.


Assuntos
Actinas , Fagossomos , Citoesqueleto de Actina , Digestão , Macrófagos , Fagocitose
3.
Connect Tissue Res ; 62(4): 436-453, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32375524

RESUMO

Purpose: The rotary cell culture system (RCCS) is a common clinorotation device for cell culture. It is also used as a low-shear suspension culture bioreactor to form functionalized 3D tissue constructs and to model microgravity. We sought to develop a 3D scaffold composed of type I collagen and hydroxyapatite (collagen-HA) to characterize MLO-Y4 osteocytes following suspension culture or clinorotation.Materials and Methods: MLO-Y4 cells were embedded in collagen-HA. The scaffold was formed into droplets for suspension culture or wall-adhered to the RCCS for clinorotation. AFM, rheometry, immunofluorescence and qRT-PCR were employed to measure the scaffold stiffness, cell viability and gene expression of cells in collagen-HA scaffolds. Dendritic cells were visualized and quantified and gene expression after suspension culture and clinorotation was compared to static controls.Results: The optimized scaffold for the RCCS consisted of collagen with 6 mg/mL HA which had a stiffness of < 1 kPa. MLO-Y4 cell viability was higher in collagen-HA scaffolds, compared to scaffolds without HA. Collagen-HA scaffolds induced higher osteocyte-specific gene expression compared to cells cultured on 2D plastic. Cells in the scaffold downregulated DMP1, E11, IL-6, and RANKL, and had fewer dendritic cells following suspension culture whereas clinorotation downregulated DMP1 and E11 genes, compared to static controls.Conclusions: Suspension culture for 3 days in collagen-HA stimulates growth of osteocytes but may also desensitize them to mechanical cues. Clinorotation for 3 days in collagen-HA does not stimulate proliferation or expression of mechanosensitive genes, indicating that it may be an effective mechanical unloading environment.


Assuntos
Durapatita , Osteócitos , Técnicas de Cultura de Células , Sobrevivência Celular , Colágeno
4.
J Cell Biochem ; 121(1): 183-199, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31172552

RESUMO

Our current understanding of phagocytosis is largely derived from studies of individual receptor-ligand interactions and their downstream signaling pathways. Because phagocytes are exposed to a variety of ligands on heterogeneous target particles in vivo, it is important to observe the engagement of multiple receptors simultaneously and the triggered involvement of downstream signaling pathways. Potential crosstalk between the two well-characterized opsonic receptors, FcγR and CR3, was briefly explored in the early 1970s, where macrophages were challenged with dual-opsonized targets. However, subsequent studies on receptor crosstalk were primarily restricted to using single opsonins on different targets, typically at saturating opsonin conditions. Beyond validating these initial explorations on receptor crosstalk, we identify the early signaling mechanisms that underlie the binding and phagocytosis during the simultaneous activation of both opsonic receptors, through the presence of a dual-opsonized target (immunoglobulin G [IgG] and C3bi), compared with single receptor activation. For this purpose, we used signaling protein inhibitor studies as well as live cell brightfield and fluorescent imaging to fully understand the role of tyrosine kinases, F-actin dynamics and internalization kinetics for FcγR and CR3. Importantly, opsonic receptors were studied together and in isolation, in the context of sparsely opsonized targets. We observed enhanced particle binding and a synergistic effect on particle internalization during the simultaneous activation of FcγR and CR3 engaged with sparsely opsonized targets. Inhibition of early signaling and cytoskeletal molecules revealed a differential involvement of Src kinase for FcγR- vs CR3- and dual receptor-mediated phagocytosis. Src activity recruits Syk kinase and we observed intermediate levels of Syk phosphorylation in dual-opsonized particles compared with those opsonized with IgG or C3bi alone. These results likely explain the intermediate levels of F-actin that is recruited to sites of dual-opsonized particle uptake and the notoriously delayed internalization of C3bi-opsonized targets by macrophages.


Assuntos
Complemento C3b/metabolismo , Macrófagos/metabolismo , Proteínas Opsonizantes/metabolismo , Fagocitose , Actinas/metabolismo , Animais , Transporte Biológico , Células da Medula Óssea/citologia , Citoesqueleto/metabolismo , Feminino , Imunoglobulina G/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Fagossomos/metabolismo , Fosforilação , Ligação Proteica , Células RAW 264.7 , Transdução de Sinais
5.
Cell Microbiol ; 18(11): 1537-1550, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27018989

RESUMO

The obligate intracellular parasite Toxoplasma gondii exploits cells of the immune system to disseminate. Upon infection, parasitized dendritic cells (DCs) and microglia exhibit a hypermigratory phenotype in vitro that has been associated with enhancing parasite dissemination in vivo in mice. One unresolved question is how parasites commandeer parasitized cells to achieve systemic dissemination by a 'Trojan-horse' mechanism. By chromatography and mass spectrometry analyses, we identified an orthologue of the 14-3-3 protein family, T. gondii 14-3-3 (Tg14-3-3), as mediator of DC hypermotility. We demonstrate that parasite-derived polypeptide fractions enriched for Tg14-3-3 or recombinant Tg14-3-3 are sufficient to induce the hypermotile phenotype when introduced by protein transfection into murine DCs, human DCs or microglia. Further, gene transfer of Tg14-3-3 by lentiviral transduction induced hypermotility in primary human DCs. In parasites expressing Tg14-3-3 in a ligand-regulatable fashion, overexpression of Tg14-3-3 was correlated with induction of hypermotility in parasitized DCs. Localization studies in infected DCs identified Tg14-3-3 within the parasitophorous vacuolar space and a rapid recruitment of host cell 14-3-3 to the parasitophorous vacuole membrane. The present work identifies a determinant role for Tg14-3-3 in the induction of the migratory activation of immune cells by T. gondii. Collectively, the findings reveal Tg14-3-3 as a novel target for an intracellular pathogen that acts by hijacking the host cell's migratory properties to disseminate.


Assuntos
Proteínas 14-3-3/fisiologia , Células Dendríticas/fisiologia , Proteínas de Protozoários/fisiologia , Toxoplasma/fisiologia , Animais , Movimento Celular , Células Cultivadas , Células Dendríticas/parasitologia , Interações Hospedeiro-Parasita , Humanos , Camundongos Endogâmicos C57BL , Vacúolos/metabolismo , Vacúolos/parasitologia
6.
J Biol Chem ; 290(31): 19245-60, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26082487

RESUMO

Macrophages are important cells of innate immunity with specialized capacity for recognition and elimination of pathogens and presentation of antigens to lymphocytes for adaptive immunity. Macrophages become activated upon exposure to pro-inflammatory cytokines and pathogenic stimuli. Classical activation of macrophages with interferon-γ (IFNγ) and lipopolysaccharide (LPS) triggers a wide range of signaling events and morphological changes to induce the immune response. Our previous microtubule (MT) proteomic work revealed that the stathmin association with MTs is considerably reduced in activated macrophages, which contain significantly more stabilized MTs. Here, we show that there is a global decrease in stathmin levels, an MT catastrophe protein, in activated macrophages using both immunoblotting and immunofluorescent microscopy. This is an LPS-specific response that induces proteasome-mediated degradation of stathmin. We explored the functions of stathmin down-regulation in activated macrophages by generating a stable cell line overexpressing stathmin-GFP. We show that stathmin-GFP overexpression impacts MT stability, impairs cell spreading, and reduces activation-associated phenotypes. Furthermore, overexpressing stathmin reduces complement receptor 3-mediated phagocytosis and cellular activation, implicating a pivotal inhibitory role for stathmin in classically activated macrophages.


Assuntos
Ativação de Macrófagos , Macrófagos/metabolismo , Estatmina/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Linhagem Celular , Forma Celular/imunologia , Regulação para Baixo , Interferon gama/fisiologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Camundongos , Microtúbulos/metabolismo , Fagocitose , Fenótipo , Complexo de Endopeptidases do Proteassoma , Estabilidade Proteica , Receptores de Complemento/metabolismo , Carneiro Doméstico , Estatmina/genética , Receptor 4 Toll-Like/metabolismo
7.
J Cell Biochem ; 117(1): 132-43, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26084267

RESUMO

Chlamydia trachomatis, the leading cause of bacterial sexually transmitted infections, disrupts cytokinesis and causes significant multinucleation in host cells. Here, we demonstrate that multinuclear cells that result from unsuccessful cell division contain significantly higher Golgi content, an important source of lipids for chlamydiae. Using immunofluorescence and fluorescent live cell imaging, we show that C. trachomatis in multinuclear cells indeed intercept Golgi-derived lipid faster than in mononuclear cells. Moreover, multinuclear cells enhance C. trachomatis inclusion growth and infectious particle formation. Together, these results indicate that C. trachomatis robustly position inclusions to the cell equator to disrupt host cell division in order to acquire host Golgi-derived lipids more quickly in multinucleated progeny cells.


Assuntos
Chlamydia trachomatis/patogenicidade , Citocinese/fisiologia , Células Gigantes/microbiologia , Divisão Celular/fisiologia , Linhagem Celular , Complexo de Golgi/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Metáfase/fisiologia
8.
J Biol Chem ; 288(30): 22096-110, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23740245

RESUMO

Osteoblasts are differentiated mesenchymal cells that function as the major bone-producing cells of the body. Differentiation cues including ascorbic acid (AA) stimulation provoke intracellular changes in osteoblasts leading to the synthesis of the organic portion of the bone, which includes collagen type I α1, proteoglycans, and matrix proteins, such as osteocalcin. During our microarray analysis of AA-stimulated osteoblasts, we observed a significant up-regulation of the microtubule (MT) plus-end binding protein, EB1, compared with undifferentiated osteoblasts. EB1 knockdown significantly impaired AA-induced osteoblast differentiation, as detected by reduced expression of osteoblast differentiation marker genes. Intracellular examination of AA-stimulated osteoblasts treated with EB1 siRNA revealed a reduction in MT stability with a concomitant loss of ß-catenin distribution at the cell cortex and within the nucleus. Diminished ß-catenin levels in EB1 siRNA-treated osteoblasts paralleled an increase in phospho-ß-catenin and active glycogen synthase kinase 3ß, a kinase known to target ß-catenin to the proteasome. EB1 siRNA treatment also reduced the expression of the ß-catenin gene targets, cyclin D1 and Runx2. Live immunofluorescent imaging of differentiated osteoblasts revealed a cortical association of EB1-mcherry with ß-catenin-GFP. Immunoprecipitation analysis confirmed an interaction between EB1 and ß-catenin. We also determined that cell-cell contacts and cortically associated EB1/ß-catenin interactions are necessary for osteoblast differentiation. Finally, using functional blocking antibodies, we identified E-cadherin as a major contributor to the cell-cell contact-induced osteoblast differentiation.


Assuntos
Ácido Ascórbico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/genética , Osteoblastos/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Western Blotting , Caderinas/genética , Caderinas/metabolismo , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/citologia , Osteoblastos/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima/efeitos dos fármacos , beta Catenina/genética , beta Catenina/metabolismo
9.
Arthritis Rheum ; 65(1): 148-58, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23044761

RESUMO

OBJECTIVE: To compare the osteoclastogenic capacity of peripheral blood mononuclear cells (PBMCs) from patients with osteoarthritis (OA) to that of PBMCs from self-reported normal individuals. METHODS: PBMCs from 140 patients with OA and 45 healthy donors were assayed for CD14+ expression and induced to differentiate into osteoclasts over 3 weeks in vitro. We assessed the number of osteoclasts, their resorptive activity, osteoclast apoptosis, and expression of the following cytokine receptors: RANK, interleukin-1 receptor type I (IL-1RI), and IL-1RII. A ridge logistic regression classifier was developed to discriminate OA patients from controls. RESULTS: PBMCs from OA patients gave rise to more osteoclasts that resorbed more bone surface than did PBMCs from controls. The number of CD14+ precursors was comparable in both groups, but there was less apoptosis in osteoclasts obtained from OA patients. Although no correlation was found between osteoclastogenic capacity and clinical or radiographic scores, levels of IL-1RI were significantly lower in cultures from patients with OA than in cultures from controls. Osteoclast apoptosis and expression levels of IL-1RI and IL-1RII were used to build a multivariate predictive model for OA. CONCLUSION: During 3 weeks of culture under identical conditions, monocytes from patients with OA display enhanced capacity to generate osteoclasts compared to cells from controls. Enhanced osteoclastogenesis is accompanied by increased resorptive activity, reduced osteoclast apoptosis, and diminished IL-1RI expression. These findings support the possibility that generalized changes in bone metabolism affecting osteoclasts participate in the pathophysiology of OA.


Assuntos
Apoptose/imunologia , Reabsorção Óssea/imunologia , Citocinas/metabolismo , Monócitos/citologia , Osteoartrite/imunologia , Osteoclastos/citologia , Idoso , Idoso de 80 Anos ou mais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/fisiopatologia , Técnicas de Cultura de Células , Feminino , Humanos , Immunoblotting , Receptores de Lipopolissacarídeos , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Osteoartrite/metabolismo , Osteoclastos/metabolismo , Osteoclastos/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Mol Biol Cell ; 35(3): ar26, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117588

RESUMO

Phagocytosis by macrophages is a highly polarized process to destroy large target cells. Binding to particles induces extensive cortical actin-generated forces that drive the formation of elaborate pseudopods around the target particle. Postinternalization, the resultant phagosome is driven toward the cell interior on microtubules (MTs) by cytoplasmic dynein. However, it is unclear whether dynein and cargo-adaptors contribute to the earlier steps of particle internalization and phagosome formation. Here we reveal that ninein, a MT minus-end-associated protein that localizes to the centrosome, is also present at the phagocytic cup in macrophages. Ninein depletion impairs particle internalization by delaying the early F-actin recruitment to sites of particle engagement and cup formation, with no impact on F-actin dynamics beyond this initial step. Ninein forms membrane-bound clusters on phagocytic cups that do not nucleate acentrosomal MTs but instead mediate the assembly of dynein-dynactin complex at active phagocytic membranes. Both ninein depletion and pharmacological inhibition of dynein activity reduced inward displacement of bound particles into macrophages. We found that ninein and dynein motor activity were required for timely retrograde movement of phagosomes and for phagolysosome formation. Taken together, these data show that ninein, alone and with dynein, play significant roles during phagocytosis.


Assuntos
Actinas , Proteínas do Citoesqueleto , Fagocitose , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Dineínas/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia , Fagossomos/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteínas do Citoesqueleto/metabolismo
11.
J Biol Chem ; 287(11): 8468-83, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22270361

RESUMO

As major effector cells of the innate immune response, macrophages must adeptly migrate from blood to infected tissues. Endothelial transmigration is accomplished by matrix metalloproteinase (MMP)-induced degradation of basement membrane and extracellular matrix components. The classical activation of macrophages with LPS and IFN-γ causes enhanced microtubule (MT) stabilization and secretion of MMPs. Macrophages up-regulate MMP-9 expression and secretion upon immunological challenge and require its activity for migration during the inflammatory response. However, the dynamics of MMP-9 production and intracellular distribution as well as the mechanisms responsible for its trafficking are unknown. Using immunofluorescent imaging, we localized intracellular MMP-9 to small Golgi-derived cytoplasmic vesicles that contained calreticulin and protein-disulfide isomerase in activated RAW 264.7 macrophages. We demonstrated vesicular organelles of MMP-9 aligned along stable subsets of MTs and showed that selective modulation of MT dynamics contributes to the enhanced trafficking of MMP-9 extracellularly. We found a Rab3D-dependent association of MMP-9 vesicles with the molecular motor kinesin, whose association with the MT network was greatly enhanced after macrophage activation. Finally, we implicated kinesin 5B and 3B isoforms in the effective trafficking of MMP-9 extracellularly.


Assuntos
Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Microtúbulos/metabolismo , Vesículas Secretórias/enzimologia , Animais , Calreticulina/metabolismo , Linhagem Celular , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Complexo de Golgi/enzimologia , Cinesinas/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/fisiologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Metaloproteinase 9 da Matriz/biossíntese , Isomerases de Dissulfetos de Proteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Regulação para Cima/efeitos dos fármacos , Proteínas rab3 de Ligação ao GTP/metabolismo
12.
J Immunol ; 186(2): 816-25, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21149599

RESUMO

FcγR-mediated phagocytosis is a cellular event that is evolutionary conserved to digest IgG-opsonized pathogens. Pseudopod formation during phagocytosis is a limiting step in managing the uptake of particles, and in this paper, we show that the conventional kinesin is involved in both receptor and membrane delivery to the phagocytic cup. Expression of a mutant kinesin isoform (GFP dominant negative mutant of kinesin H chain [EGFP-Kif5B-DN]) in RAW264.7 cells significantly reduced binding of IgG-sheep RBCs when macrophages were faced with multiple encounters with opsonized particles. Scanning electron microscopy analysis of EGFP-Kif5B-DN-expressing cells challenged with two rounds of IgG-sheep RBCs showed sparse, extremely thin pseudopods. We saw disrupted Rab11 trafficking to the phagocytic cup in EGFP-Kif5B-DN-transfected cells. Our particle overload assays also implicated phagosome membrane recycling in pseudopod formation. We observed reduced phagosome fission and trafficking in mutant kinesin-expressing cells, as well as reduced cell surface expression of FcγRs and Mac-1 receptors. In conclusion, anterograde trafficking via kinesin is essential for both receptor recycling from the phagosome and delivery of Rab11-containing membrane stores to effect broad and functional pseudopods during FcγR-mediated phagocytosis.


Assuntos
Membranas Intracelulares/enzimologia , Membranas Intracelulares/imunologia , Cinesinas/fisiologia , Fagocitose/imunologia , Receptores de IgG/metabolismo , Proteínas SNARE/metabolismo , Animais , Linhagem Celular , Polaridade Celular/genética , Polaridade Celular/imunologia , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Exocitose/genética , Exocitose/imunologia , Membranas Intracelulares/ultraestrutura , Cinesinas/genética , Cinesinas/ultraestrutura , Camundongos , Fagocitose/genética , Fagossomos/enzimologia , Fagossomos/imunologia , Fagossomos/ultraestrutura , Ligação Proteica/genética , Ligação Proteica/imunologia , Transporte Proteico/genética , Transporte Proteico/imunologia , Pseudópodes/enzimologia , Pseudópodes/imunologia , Pseudópodes/ultraestrutura , Receptores de IgG/fisiologia , Receptores de IgG/ultraestrutura , Proteínas SNARE/ultraestrutura , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transfecção , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/ultraestrutura
13.
Mol Biol Cell ; 33(8): ar68, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511803

RESUMO

Osteoclasts are highly specialized, multinucleated cells responsible for the selective resorption of the dense, calcified bone matrix. Microtubules (MTs) contribute to the polarization and trafficking events involved in bone resorption by osteoclasts; however, the origin of these elaborate arrays is less clear. Osteoclasts arise through cell fusion of precursor cells. Previous studies have suggested that centrosome MT nucleation is lost during this process, with the nuclear membrane and its surrounding Golgi serving as the major MT organizing centers (MTOCs) in these cells. Here we reveal that precursor cell centrosomes are maintained and functional in the multinucleated osteoclast and interestingly form large MTOC clusters, with the clusters organizing significantly more MTs compared with individual centrosomes. MTOC cluster formation requires dynamic MTs and minus-end directed MT motor activity. Inhibition of these centrosome clustering elements had a marked impact on both F-actin ring formation and bone resorption. Together these findings show that multinucleated osteoclasts employ unique centrosomal clusters to organize the extensive MTs during bone attachment and resorption.


Assuntos
Reabsorção Óssea , Osteoclastos , Reabsorção Óssea/metabolismo , Centrossomo/metabolismo , Humanos , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo
14.
Pathogens ; 11(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015029

RESUMO

Legionella pneumophila is an accidental pathogen that replicates intracellularly within the Legionella-containing vacuole (LCV) in macrophages. Within an hour of infection, L. pneumophila secretes effectors to manipulate Rab1 and intercept ER-derived vesicles to the LCV. The downstream consequences of interrupted ER trafficking on the Golgi of macrophages are not clear. We examined the Golgi structure and function in L. pneumophila-infected human U937 macrophages. Intriguingly, the size of the Golgi in infected macrophages remained similar to uninfected macrophages. Furthermore, TEM analysis also did not reveal any significant changes in the ultrastructure of the Golgi in L. pneumophila-infected cells. Drug-induced Golgi disruption impacted bacterial replication in human macrophages, suggesting that an intact organelle is important for bacteria growth. To probe for Golgi functionality after L. pneumophila infection, we assayed glycosylation levels using fluorescent lectins. Golgi O-glycosylation levels, visualized by the fluorescent cis-Golgi lectin, Helix pomatia agglutinin (HPA), significantly decreased over time as infection progressed, compared to control cells. N-glycosylation levels in the Golgi, as measured by L-PHA lectin staining, were not impacted by L. pneumophila infection. To understand the mechanism of reduced O-glycans in the Golgi we monitored UDP-GalNAc transporter levels in infected macrophages. The solute carrier family 35 membrane A2 (SLC35A2) protein levels were significantly reduced in L. pneumophila-infected U937 and HeLa cells and L. pneumophila growth in human macrophages benefitted from GalNAc supplementation. The pronounced reduction in Golgi HPA levels was dependent on the translocation apparatus DotA expression in bacteria and occurred in a ubiquitin-independent manner. Thus, L. pneumophila infection of human macrophages maintains and requires an intact host Golgi ultrastructure despite known interference of ER-Golgi trafficking. Finally, L. pneumophila infection blocks the formation of O-linked glycans and reduces SLC35A2 protein levels in infected human macrophages.

15.
Mol Cell Proteomics ; 8(11): 2500-14, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19651621

RESUMO

Classical activation of macrophages induces a wide range of signaling and vesicle trafficking events to produce a more aggressive cellular phenotype. The microtubule (MT) cytoskeleton is crucial for the regulation of immune responses. In the current study, we used a large scale proteomics approach to analyze the change in protein composition of the MT-associated protein (MAP) network by macrophage stimulation with the inflammatory cytokine interferon-gamma and the endotoxin lipopolysaccharide. Overall the analysis identified 409 proteins that bound directly or indirectly to MTs. Of these, 52 were up-regulated 2-fold or greater and 42 were down-regulated 2-fold or greater after interferon-gamma/lipopolysaccharide stimulation. Bioinformatics analysis based on publicly available binary protein interaction data produced a putative interaction network of MAPs in activated macrophages. We confirmed the up-regulation of several MAPs by immunoblotting and immunofluorescence analysis. More detailed analysis of one up-regulated protein revealed a role for HSP90beta in stabilization of the MT cytoskeleton during macrophage activation.


Assuntos
Regulação da Expressão Gênica , Macrófagos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteômica/métodos , Animais , Biologia Computacional/métodos , Citoesqueleto/metabolismo , Bases de Dados de Proteínas , Reações Falso-Positivas , Humanos , Lipopolissacarídeos/metabolismo , Ativação de Macrófagos , Camundongos , Modelos Biológicos
16.
Front Immunol ; 12: 662063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995386

RESUMO

Phagocytosis is an essential process for the uptake of large (>0.5 µm) particulate matter including microbes and dying cells. Specialized cells in the body perform phagocytosis which is enabled by cell surface receptors that recognize and bind target cells. Professional phagocytes play a prominent role in innate immunity and include macrophages, neutrophils and dendritic cells. These cells display a repertoire of phagocytic receptors that engage the target cells directly, or indirectly via opsonins, to mediate binding and internalization of the target into a phagosome. Phagosome maturation then proceeds to cause destruction and recycling of the phagosome contents. Key subsequent events include antigen presentation and cytokine production to alert and recruit cells involved in the adaptive immune response. Bridging the innate and adaptive immunity, macrophages secrete a broad selection of inflammatory mediators to orchestrate the type and magnitude of an inflammatory response. This review will focus on cytokines produced by NF-κB signaling which is activated by extracellular ligands and serves a master regulator of the inflammatory response to microbes. Macrophages secrete pro-inflammatory cytokines including TNFα, IL1ß, IL6, IL8 and IL12 which together increases vascular permeability and promotes recruitment of other immune cells. The major anti-inflammatory cytokines produced by macrophages include IL10 and TGFß which act to suppress inflammatory gene expression in macrophages and other immune cells. Typically, macrophage cytokines are synthesized, trafficked intracellularly and released in response to activation of pattern recognition receptors (PRRs) or inflammasomes. Direct evidence linking the event of phagocytosis to cytokine production in macrophages is lacking. This review will focus on cytokine output after engagement of macrophage phagocytic receptors by particulate microbial targets. Microbial receptors include the PRRs: Toll-like receptors (TLRs), scavenger receptors (SRs), C-type lectin and the opsonic receptors. Our current understanding of how macrophage receptor stimulation impacts cytokine production is largely based on work utilizing soluble ligands that are destined for endocytosis. We will instead focus this review on research examining receptor ligation during uptake of particulate microbes and how this complex internalization process may influence inflammatory cytokine production in macrophages.


Assuntos
Citocinas/imunologia , Macrófagos/imunologia , Fagócitos/imunologia , Fagócitos/microbiologia , Transdução de Sinais/imunologia , Animais , Antígenos de Bactérias/imunologia , Citocinas/biossíntese , Humanos , Imunidade Inata , Camundongos , Subunidade p50 de NF-kappa B/imunologia , Fagocitose/imunologia , Fagossomos/imunologia , Fagossomos/microbiologia , Receptores Toll-Like/imunologia
17.
J Biol Chem ; 284(42): 28522-32, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19700408

RESUMO

We describe a role for diacylglycerol in the activation of Ras and Rap1 at the phagosomal membrane. During phagocytosis, Ras density was similar on the surface and invaginating areas of the membrane, but activation was detectable only in the latter and in sealed phagosomes. Ras activation was associated with the recruitment of RasGRP3, a diacylglycerol-dependent Ras/Rap1 exchange factor. Recruitment to phagosomes of RasGRP3, which contains a C1 domain, parallels and appears to be due to the formation of diacylglycerol. Accordingly, Ras and Rap1 activation was precluded by antagonists of phospholipase C and of diacylglycerol binding. Ras is dispensable for phagocytosis but controls activation of extracellular signal-regulated kinase, which is partially impeded by diacylglycerol inhibitors. By contrast, cross-activation of complement receptors by stimulation of Fcgamma receptors requires Rap1 and involves diacylglycerol. We suggest a role for diacylglycerol-dependent exchange factors in the activation of Ras and Rap1, which govern distinct processes induced by Fcgamma receptor-mediated phagocytosis to enhance the innate immune response.


Assuntos
Diglicerídeos/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Animais , Eritrócitos/metabolismo , Imunidade Inata , Imunoglobulina G/metabolismo , Camundongos , Microscopia Confocal/métodos , Fagocitose , Isoformas de Proteínas , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ovinos , Transdução de Sinais
18.
Mol Biol Cell ; 18(7): 2389-99, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17442887

RESUMO

Cell polarization is essential for targeting signaling elements and organelles to active plasma membrane regions. In a few specialized cell types, cell polarity is enhanced by reorientation of the MTOC and associated organelles toward dynamic membrane sites. Phagocytosis is a highly polarized process whereby particles >0.5 microm are internalized at stimulated regions on the cell surface of macrophages. Here we provide detailed evidence that the MTOC reorients toward the site of particle internalization during phagocytosis. We visualized MTOC proximity to IgG-sRBCs in fixed RAW264.7 cells, during live cell imaging using fluorescent chimeras to label the MTOC and using frustrated phagocytosis assays. MTOC reorientation in macrophages is initiated by FcgammaR ligation and is complete within 1 h. Polarization of the MTOC toward the phagosome requires the MT cytoskeleton and dynein motor activity. cdc42, PI3K, and mPAR-6 are all important signaling molecules for MTOC reorientation during phagocytosis. MTOC reorientation was not essential for particle internalization or phagolysosome formation. However Golgi reorientation in concert with MTOC reorientation during phagocytosis implicates MTOC reorientation in antigen processing events in macrophages.


Assuntos
Polaridade Celular , Macrófagos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Fagocitose , Receptores Fc/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Dineínas/metabolismo , Complexo de Golgi/metabolismo , Macrófagos/citologia , Camundongos , Microtúbulos/metabolismo , Modelos Biológicos , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ovinos , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo
19.
Front Immunol ; 10: 3049, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993058

RESUMO

Macrophages are professional phagocytes that are uniquely situated between the innate and adaptive arms of immunity with a high capacity for phagocytosis and proinflammatory cytokine production as well as antigen presentation. Phagocytosis is a critical process to eliminate microbes, apoptotic cells and other foreign particles and is accelerated by host-generated opsonins, such as antibodies and complement. Early phagocytosis studies established the paradigm that FcγR-mediated phagocytosis was more proinflammatory than Complement Receptor (CR)-mediated uptake in macrophages. Using qPCR, cytokine antibody arrays and ELISA, we revisited this research question in primary macrophages. Using qPCR we determined that CR-mediated phagocytosis increases levels of TNF-α, IL-1ß, IL-6, and MMP-9, compared to FcγR-mediated phagocytosis and control unstimulated cells. We confirmed these findings at the protein level using cytokine antibody arrays and ELISAs. We next investigated the mechanism behind upregulated cytokine production during CR-mediated phagocytosis. IκBα protein levels were reduced after phagocytosis of both IgG- and C3bi-sRBCs indicating proteolytic degradation and implicating NF-κB activation. Inhibition of NF-κB activation impacted IL-6 production during phagocytosis in macrophages. Due to the roles of calpain in IκBα and integrin degradation, we hypothesized that CR-mediated phagocytosis may utilize calpain for proinflammatory mediator enhancement. Using qPCR and cytokine antibody array analysis, we saw significant reduction of cytokine expression during CR-mediated phagocytosis following the addition of the calpain inhibitor, PD150606, compared to untreated cells. These results suggest that the upregulation of proinflammatory mediators during CR-mediated phagocytosis is potentially dependent upon calpain-mediated activation of NF-κB.


Assuntos
Citocinas/biossíntese , Macrófagos/imunologia , Fagocitose/imunologia , Receptores de Complemento/imunologia , Animais , Calpaína/imunologia , Calpaína/metabolismo , Citocinas/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , NF-kappa B/imunologia , NF-kappa B/metabolismo , Receptores de Complemento/metabolismo
20.
J Leukoc Biol ; 82(2): 417-28, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17502337

RESUMO

Phagocytosis is a complex sequence of events involving coordinated remodeling of the plasma membrane with the underlying cytoskeleton. Although the role of the actin cytoskeleton is becoming increasingly elucidated, the role of microtubules (MTs) remains poorly understood. Here, we examine the role of MTs during FcgammaR-mediated phagocytosis in RAW264.7 mouse macrophages. We observe that MTs extend into the phagosomal cups. The MT-depolymerizing agents, colchicine and nocodazole, cause a sizeable reduction in phagocytosis of large particles in RAW264.7 cells. Phagocytosis in primed macrophages is unaffected by MT-depolymerizing agents. However, activation of macrophages coincides with an increased population of drug-stable MTs, which persist in functional phagocytic cups. Scanning electron microscopy analysis of unprimed macrophages reveals that pseudopod formation is reduced markedly following colchicine treatment, which is not a consequence of cell rounding. MT depolymerization in these cells does not affect particle binding, Syk, or Grb2-associated binder 2 recruitment or phosphotyrosine accumulation at the site of phagocytosis. Ras activation also proceeds normally in macrophages treated with colchicine. However, MT disruption causes a decrease in accumulation of AKT-pleckstrin homology-green fluorescent protein, a probe that binds to PI-3K products at the sites of particle binding. A corresponding decline in activated AKT is observed in colchicine-treated cells using immunoblotting with a phospho-specific-AKT (ser473) antibody. Furthermore, the translocation of the p85alpha regulatory subunit of PI-3K is reduced at the phagocytic cup in colchicine-treated cells. These findings suggest that MTs regulate the recruitment and localized activity of PI-3K during pseudopod formation.


Assuntos
Macrófagos Peritoneais/imunologia , Microtúbulos/fisiologia , Fagocitose , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de IgG/imunologia , Animais , Linhagem Celular , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/fisiologia , Macrófagos Peritoneais/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Receptores de IgG/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA