Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 80: 306-339, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-32610149

RESUMO

Despite significant advancements made in the treatment of cancer during the past several decades, it remains one of the leading causes of death worldwide killing approximately 9.6 million people annually. The major challenge for therapeutic success is the development of chemoresistance in cancer cells against conventional chemotherapeutic agents via modulation of numerous survival and oncogenic signaling pathways. Therefore, sensitization of cancer cells to conventional drugs using multitargeted agents that suppress the survival and oncogenic pathways, in single or in combination, is an emerging strategy to overcome drug-resistance. During the last couple of decades, phytochemicals such as curcumin, resveratrol, tocotrienol and quercetin have emerged as potential chemosensitizing agents in cancer cells due to their less toxic and multitargeted properties. Numerous preclinical and clinical studies enumerated their potential to prevent drug resistance and sensitize cancer cells to chemotherapeutic agents by modulating several genes/proteins or pathways that regulate the key factors during the growth and progression of tumors such as inhibition of anti-apoptotic proteins, activation of pro-apoptotic proteins, reduced expression of different transcription factors, chemokines, enzymes, cell adhesion molecules, protein tyrosine kinases and cell cycle regulators. Therefore, natural chemosensitizing agents will have a special place in cancer treatment in the near future. This comprehensive review summarizes data obtained from various in vitro, in vivo and clinical studies to provide a new perspective for the application of agents obtained from "Mother Nature" as potential chemosensitizers for further cancer drug research and development.


Assuntos
Antineoplásicos , Curcumina , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Transdução de Sinais
2.
Phytother Res ; 36(5): 1854-1883, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35102626

RESUMO

The medicinal plant Scutellaria baicalensis, commonly known as Chinese skullcap or Huang-Qin, has been used as a traditional medicine for several thousand years. The roots of this plant contain bioactive compounds, such as wogonin (WOG), wogonoside, baicalein, and baicalin. The aim of this article is to evaluate the therapeutic potential and mechanisms of action of WOG against different cancers. Numerous in vitro and in vivo studies have revealed that WOG exerts immense therapeutic potential against bladder cancer, breast cancer, cholangiocarcinoma, cervical cancer, colorectal cancer, gallbladder cancer, gastric cancer, glioblastoma, head and neck cancer, hepatic cancer, leukemia, lung cancer, lymphoma, melanoma, multiple myeloma, neuroblastoma, osteosarcoma, ovarian cancer, pancreatic cancer, prostate cancer, and renal cancer by regulating various cell signaling pathways. WOG, in combination with established chemotherapeutic drugs, improves the efficacy of treatment and lowers toxicity. Nevertheless, human trials are warranted to validate these findings. Numerous preclinical studies, combined with an extensive margin of safety and no severe side effects, underscore WOG's therapeutic potential as an anticancer drug. These studies propound the use of WOG as a potential anticancer candidate; however, further high-quality studies are required to firmly establish the clinical efficacy of WOG for the prevention and treatment of human malignancies.


Assuntos
Medicamentos de Ervas Chinesas , Flavanonas , Neoplasias , Scutellaria , Medicamentos de Ervas Chinesas/farmacologia , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Flavonoides , Humanos , Masculino , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Extratos Vegetais/farmacologia , Scutellaria baicalensis
3.
J Cell Physiol ; 236(12): 7938-7965, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34105151

RESUMO

In recent years, triple-negative breast cancer (TNBC) has emerged as the most aggressive subtype of breast cancer and is usually associated with increased mortality worldwide. The severity of TNBC is primarily observed in younger women, with cases ranging from approximately 12%-24% of all breast cancer cases. The existing hormonal therapies offer limited clinical solutions in completely circumventing the TNBC, with chemoresistance and tumor recurrences being the common hurdles in the path of TNBC treatment. Accumulating evidence has correlated the dysregulation of long noncoding RNAs (lncRNAs) with increased cell proliferation, invasion, migration, tumor growth, chemoresistance, and decreased apoptosis in TNBC. Various clinical studies have revealed that aberrant expression of lncRNAs in TNBC tissues is associated with poor prognosis, lower overall survival, and disease-free survival. Due to these specific characteristics, lncRNAs have emerged as novel diagnostic and prognostic biomarkers for TNBC treatment. However, the underlying mechanism through which lncRNAs perform their actions remains unclear, and extensive research is being carried out to reveal it. Therefore, understanding of mechanisms regulating the modulation of lncRNAs will be a substantial breakthrough in effective treatment therapies for TNBC. This review highlights the association of several lncRNAs in TNBC progression and treatment, along with their possible functions and mechanisms.


Assuntos
Carcinogênese/genética , Recidiva Local de Neoplasia/genética , RNA Longo não Codificante/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , RNA Longo não Codificante/genética
4.
Mol Cell Biochem ; 476(9): 3303-3318, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33895911

RESUMO

Lung cancer represents one of the most prevalent neoplasms across the globe. Tobacco smoking, exposure to different occupational and environmental carcinogens, and various dietary factors are strongly implicated in the development of lung cancer. The 5-year survival rate of lung cancer is extremely poor which can be attributed to its propensity for early spread, lack of appropriate biomarkers and proper therapeutic strategies for this aggressive neoplasm. Emerging evidence suggests tumor necrosis factor-α-induced protein eight like 1 (TIPE1 or TNFAIP8L1), which functions as a cell death regulator, to hold high prospect as an important biomarker. Interestingly, this protein was found to be significantly downregulated in human lung cancer tissues compared to normal lung tissues. In addition, this protein exerted marked downregulation in different stages and grades of lung tumor. Further knockout of TIPE1 led to the enhancement in proliferation, survival, migration and invasion of NCIH460 human lung cancer cells through modulation of Akt/mTOR/STAT-3 signaling cascade. In addition, TIPE1 was found to be involved in nicotine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, N-nitrosonornicotine and benzo[a]pyrene-mediated lung cancer through enhanced proliferation, survival and migration of lung cancer cells. Altogether, this newly identified protein plays a critical role in lung cancer pathogenesis and possess enormous prospect to serve as an important tool in the effective management of this aggressive neoplasm.


Assuntos
Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/patologia , Apoptose , Biomarcadores Tumorais/genética , Sistemas CRISPR-Cas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Invasividade Neoplásica , Prognóstico , Células Tumorais Cultivadas
5.
Crit Rev Immunol ; 40(1): 1-39, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32421977

RESUMO

Most chronic diseases, caused by lifestyle factors, appear to be linked to inflammation. Inflammation is activated mechanistically, and nuclear factor-κB (NF-κB) is a significant mediator. NF-κB, one of the most studied transcription factors, was first identified in the nucleus of B lymphocytes almost three decades ago. This protein has a key function in regulating the human immune system, and its dysregulation has been linked to many chronic diseases including asthma, cancer, diabetes, rheumatoid arthritis, inflammation, and neurological disorders. Physiologically, many cytokines have been discovered that activate NF-κB. Pathologically, environmental carcinogens such as cigarette smoke, radiation, bacteria, and viruses can also activate this transcription factor. NF-κB activation controls expression of more than 500 genes, and most are deleterious to the human body when dysregulated. More than 70,000 articles have been published regarding NF-κB. This review emphasizes the upside and downside of NF-κB in normal and disease conditions and the ways in which we can control this critical transcription factor in patients.


Assuntos
Asma/metabolismo , Doenças Autoimunes/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo , Doenças do Sistema Nervoso/metabolismo , Animais , Doença Crônica , Regulação da Expressão Gênica , Humanos , NF-kappa B/genética , Transdução de Sinais
6.
Phytother Res ; 35(12): 6768-6801, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34498308

RESUMO

The last decade has seen an unprecedented rise in the prevalence of chronic diseases worldwide. Different mono-targeted approaches have been devised to treat these multigenic diseases, still most of them suffer from limited success due to the off-target debilitating side effects and their inability to target multiple pathways. Hence a safe, efficacious, and multi-targeted approach is the need for the hour to circumvent these challenging chronic diseases. Curcumin, a natural compound extracted from the rhizomes of Curcuma longa, has been under intense scrutiny for its wide medicinal and biological properties. Curcumin is known to manifest antibacterial, antiinflammatory, antioxidant, antifungal, antineoplastic, antifungal, and proapoptotic effects. A plethora of literature has already established the immense promise of curcuminoids in the treatment and clinical management of various chronic diseases like cancer, cardiovascular, metabolic, neurological, inflammatory, and infectious diseases. To date, more than 230 clinical trials have opened investigations to understand the pharmacological aspects of curcumin in human systems. Still, further randomized clinical studies in different ethnic populations warrant its transition to a marketed drug. This review summarizes the results from different clinical trials of curcumin-based therapeutics in the prevention and treatment of various chronic diseases.


Assuntos
Antineoplásicos , Curcumina , Neoplasias , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Doença Crônica , Curcuma , Curcumina/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico
7.
Pharmacol Res ; 153: 104635, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31926274

RESUMO

The World Health Organization (WHO) has documented that cancer is the second foremost reason for death worldwide. Various factors are responsible for cancer, for instance, exposure to different physical, chemical and biological carcinogens, infections, hereditary, poor dietary habits and lifestyle etc. Cancer is a preventable disease if detected at an early stage; however, most of the cases of cancer are diagnosed at an incurable advanced or metastatic stage. According to WHO about 70 % of deaths due to cancer occur in countries with low- or middle-income. The major problems associated with the conventional therapies are cancer recurrence, development of chemoresistance, affordability, late-stage diagnosis, adverse side effects and inaccessible treatment. Thus, there is an urgent need to find alternative treatment modalities, which have easy accessibility and are affordable with minimum side effects. In this article, we reviewed the natural stilbene known as "Piceatannol" for its anticancer properties. Numerous preclinical studies have reported the potential of Piceatannol to prevent or impede the growth of various cancers originating from different organs such as brain, breast, cervical, colon, liver, lung, prostate, skin, etc. The current review primarily emphasises on the insights of Piceatannol source, chemistry, and the molecular mechanisms involved in the regression of the tumor. This review supports Piceatannol as a potential anticancer and chemopreventive agent and suggests that it can be effectively employed as a capable anti-cancer drug.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias/prevenção & controle , Inibidores de Proteínas Quinases/uso terapêutico , Estilbenos/farmacologia , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/uso terapêutico , Humanos , Estrutura Molecular , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/metabolismo , Estilbenos/farmacocinética , Estilbenos/uso terapêutico
8.
Int J Mol Sci ; 21(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384682

RESUMO

Oral cancer (OC) is a devastating disease that takes the lives of lots of people globally every year. The current spectrum of treatment modalities does not meet the needs of the patients. The disease heterogeneity demands personalized medicine or targeted therapies. Therefore, there is an urgent need to identify potential targets for the treatment of OC. Abundant evidence has suggested that the components of the protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway are intrinsic factors for carcinogenesis. The AKT protein is central to the proliferation and survival of normal and cancer cells, and its downstream protein, mTOR, also plays an indispensable role in the cellular processes. The wide involvement of the AKT/mTOR pathway has been noted in oral squamous cell carcinoma (OSCC). This axis significantly regulates the various hallmarks of cancer, like proliferation, survival, angiogenesis, invasion, metastasis, autophagy, and epithelial-to-mesenchymal transition (EMT). Activated AKT/mTOR signaling is also associated with circadian signaling, chemoresistance and radio-resistance in OC cells. Several miRNAs, circRNAs and lncRNAs also modulate this pathway. The association of this axis with the process of tumorigenesis has culminated in the identification of its specific inhibitors for the prevention and treatment of OC. In this review, we discussed the significance of AKT/mTOR signaling in OC and its potential as a therapeutic target for the management of OC. This article also provided an update on several AKT/mTOR inhibitors that emerged as promising candidates for therapeutic interventions against OC/head and neck cancer (HNC) in clinical studies.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Bucais/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/metabolismo , Ensaios Clínicos como Assunto , Humanos , Neoplasias Bucais/metabolismo , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos
9.
Molecules ; 25(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408623

RESUMO

According to the World Health Organization (WHO), cancer is the second-highest cause of mortality in the world, and it kills nearly 9.6 million people annually. Besides the fatality of the disease, poor prognosis, cost of conventional therapies, and associated side-effects add more burden to patients, post-diagnosis. Therefore, the search for alternatives for the treatment of cancer that are safe, multi-targeted, effective, and cost-effective has compelled us to go back to ancient systems of medicine. Natural herbs and plant formulations are laden with a variety of phytochemicals. One such compound is rhein, which is an anthraquinone derived from the roots of Rheum spp. and Polygonum multiflorum. In ethnomedicine, these plants are used for the treatment of inflammation, osteoarthritis, diabetes, and bacterial and helminthic infections. Increasing evidence suggests that this compound can suppress breast cancer, cervical cancer, colon cancer, lung cancer, ovarian cancer, etc. in both in vitro and in vivo settings. Recent studies have reported that this compound modulates different signaling cascades in cancer cells and can prevent angiogenesis and progression of different types of cancers. The present review highlights the cancer-preventing and therapeutic properties of rhein based on the available literature, which will help to extend further research to establish the chemoprotective and therapeutic roles of rhein compared to other conventional drugs. Future pharmacokinetic and toxicological studies could support this compound as an effective anticancer agent.


Assuntos
Antraquinonas/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Fallopia multiflora/química , Neoplasias , Raízes de Plantas/química , Rheum/química , Antraquinonas/química , Antineoplásicos Fitogênicos/química , Feminino , Humanos , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/prevenção & controle
10.
J Transl Med ; 16(1): 14, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370858

RESUMO

Extensive research within the last several decades has revealed that the major risk factors for most chronic diseases are infections, obesity, alcohol, tobacco, radiation, environmental pollutants, and diet. It is now well established that these factors induce chronic diseases through induction of inflammation. However, inflammation could be either acute or chronic. Acute inflammation persists for a short duration and is the host defense against infections and allergens, whereas the chronic inflammation persists for a long time and leads to many chronic diseases including cancer, cardiovascular diseases, neurodegenerative diseases, respiratory diseases, etc. Numerous lines of evidence suggest that the aforementioned risk factors induced cancer through chronic inflammation. First, transcription factors NF-κB and STAT3 that regulate expression of inflammatory gene products, have been found to be constitutively active in most cancers; second, chronic inflammation such as pancreatitis, prostatitis, hepatitis etc. leads to cancers; third, activation of NF-κB and STAT3 leads to cancer cell proliferation, survival, invasion, angiogenesis and metastasis; fourth, activation of NF-κB and STAT3 leads to resistance to chemotherapy and radiation, and hypoxia and acidic conditions activate these transcription factors. Therefore, targeting these pathways may provide opportunities for both prevention and treatment of cancer and other chronic diseases. We will discuss in this review the potential of various dietary agents such as spices and its components in the suppression of inflammatory pathways and their roles in the prevention and therapy of cancer and other chronic diseases. In fact, epidemiological studies do indicate that cancer incidence in countries such as India where spices are consumed daily is much lower (94/100,000) than those where spices are not consumed such as United States (318/100,000), suggesting the potential role of spices in cancer prevention.


Assuntos
Doença Crônica , Inflamação/patologia , Especiarias , Animais , Suplementos Nutricionais , Humanos , Transdução de Sinais
11.
Clin Sci (Lond) ; 131(15): 1781-1799, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28679846

RESUMO

Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Curcumina/uso terapêutico , Receptores ErbB/fisiologia , Humanos , NF-kappa B/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/fisiopatologia , Fator de Transcrição STAT3/fisiologia
12.
Life Sci ; 293: 120332, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35041835

RESUMO

Lung cancer is the foremost cause of cancer related mortality among men and one of the most fatal cancers among women. Notably, the 5-year survival rate of lung cancer is very low; 5% in developing countries. This low survival rate can be attributed to factors like late stage diagnosis, rapid postoperative recurrences in the patients undergoing treatment and development of chemoresistance against different agents used for treating lung cancer. Therefore, in this study we evaluated the potential of a recently identified protein namely TIPE3 which is known as a transfer protein of lipid second messengers as a lung cancer biomarker. TIPE3 was found to be significantly upregulated in lung cancer tissues indicating its role in the positive regulation of lung cancer. Supporting this finding, knockout of TIPE3 was also found to reduce the proliferation, survival and migration of lung cancer cells and arrested the G2 phase of cell cycle through inactivation of Akt/mTOR, NF-κB, STAT-3 signaling. It is well evinced that tobacco is the major risk factor of lung cancer which affects both males and females. Therefore, this study also evaluated the involvement of TIPE3 in tobacco mediated lung carcinogenesis. Notably, this study shows for the first time that TIPE3 positively regulates tobacco induced proliferation, survival and migration of lung cancer through modulation of Akt/mTOR signaling. Thus, TIPE3 plays critical role in the pathogenesis of lung cancer and hence it can be specifically targeted to develop novel therapeutic strategies.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Neoplasias Pulmonares/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Biomarcadores Tumorais/deficiência , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Técnicas de Inativação de Genes/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias Pulmonares/patologia , NF-kappa B/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores
13.
Life Sci ; 267: 118814, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333052

RESUMO

BACKGROUND: Despite the remarkable advances made in the diagnosis and treatment of cancer during the past couple of decades, it remains the second largest cause of mortality in the world, killing approximately 9.6 million people annually. The major challenges in the treatment of the advanced stage of this disease are the development of chemoresistance, severe adverse effects of the drugs, and high treatment cost. Therefore, the development of drugs that are safe, efficacious, and cost-effective remains a 'Holy Grail' in cancer research. However, the research over the past four decades shed light on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action. Apigenin is one such compound, which is known to be safe and has significant potential in the prevention and therapy of this disease. AIM: To assess the literature available on the potential of apigenin and its analogs in modulating the key molecular targets leading to the prevention and treatment of different types of cancer. METHOD: A comprehensive literature search has been carried out on PubMed for obtaining information related to the sources and analogs, chemistry and biosynthesis, physicochemical properties, biological activities, bioavailability and toxicity of apigenin. KEY FINDINGS: The literature search resulted in many in vitro, in vivo and a few cohort studies that evidenced the effectiveness of apigenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK/ERK, Wnt/ß-catenin, etc., which play a crucial role in the development and progression of cancer. In addition, apigenin was also shown to inhibit chemoresistance and radioresistance and make cancer cells sensitive to these agents. Reports have further revealed the safety of the compound and the adaptation of nanotechnological approaches for improving its bioavailability. SIGNIFICANCE: Hence, the present review recapitulates the properties of apigenin and its pharmacological activities against different types of cancer, which warrant further investigation in clinical settings.


Assuntos
Apigenina/metabolismo , Apigenina/farmacologia , Neoplasias/tratamento farmacológico , Disponibilidade Biológica , Produtos Biológicos/farmacologia , Humanos , NF-kappa B/metabolismo , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
14.
Nat Prod Res ; 35(13): 2145-2156, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31526148

RESUMO

Sixteen new analogues were synthesized from ricinine and tested alongside with seven known analogues for their cytotoxic activity against oral cancer (SAS cells) and normal epithelial cells (L132 cells). In contrast to 5-FU, the synthesized ricinine analogues did not show toxicity to normal cells. However, some of them inhibited the proliferation of oral cancer cells at 25 µM as evident from the MTT assay results. Ricinine analogue (19) was shown to be the most active derivative (69.22% inhibition). Potential targets involved in the oral cancer inhibitory activity of compound 19 were investigated using in-silico studies and western blot analysis. PTP1B was predicted to be a target for ricinine using reverse docking approach. This prediction was confirmed by western blot analysis that revealed the downregulation of PTP1B protein by compound 19. Moreover, it showed downregulation of COX-2 which is also extensively expressed in oral cancer.


Assuntos
Alcaloides/síntese química , Alcaloides/farmacologia , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Piridonas/síntese química , Piridonas/farmacologia , Alcaloides/química , Antineoplásicos/farmacologia , Domínio Catalítico , Morte Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Piridonas/química , Relação Estrutura-Atividade
15.
Front Pharmacol ; 12: 699842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276382

RESUMO

Background: Tumor microenvironment (TME) has a pivotal impact on tumor progression, and epithelial-mesenchymal transition (EMT) is an extremely crucial initial event in the metastatic process in colorectal cancer (CRC) that is not yet fully understood. Calebin A (an ingredient in Curcuma longa) has been shown to repress CRC tumor growth. However, whether Calebin A is able to abrogate TME-induced EMT in CRC was investigated based on the underlying pathways. Methods: CRC cell lines (HCT116, RKO) were exposed with Calebin A and/or a FAK inhibitor, cytochalasin D (CD) to investigate the action of Calebin A in TME-induced EMT-related tumor progression. Results: TME induced viability, proliferation, and increased invasiveness in 3D-alginate CRC cultures. In addition, TME stimulated stabilization of the master EMT-related transcription factor (Slug), which was accompanied by changes in the expression patterns of EMT-associated biomarkers. Moreover, TME resulted in stimulation of NF-κB, TGF-ß1, and FAK signaling pathways. However, these effects were dramatically reduced by Calebin A, comparable to FAK inhibitor or CD. Finally, TME induced a functional association between NF-κB and Slug, suggesting that a synergistic interaction between the two transcription factors is required for initiation of EMT and tumor cell invasion, whereas Calebin A strongly inhibited this binding and subsequent CRC cell migration. Conclusion: We propose for the first time that Calebin A modulates TME-induced EMT in CRC cells, at least partially through the NF-κB/Slug axis, TGF-ß1, and FAK signaling. Thus, Calebin A appears to be a potential agent for the prevention and management of CRC.

16.
Artigo em Inglês | MEDLINE | ID: mdl-34909644

RESUMO

Although chronic diseases are often caused by the perturbations in multiple cellular components involved in different biological processes, most of the approved therapeutics target a single gene/protein/pathway which makes them not as efficient as they are anticipated and are also known to cause severe side effects. Therefore, the pursuit of safe, efficacious, and multitargeted agents is imperative for the prevention and treatment of these diseases. Cardamonin is one such agent that has been known to modulate different signaling molecules such as transcription factors (NF-κB and STAT3), cytokines (TNF-α, IL-1ß, and IL-6) enzymes (COX-2, MMP-9 and ALDH1), other proteins and genes (Bcl-2, XIAP and cyclin D1), involved in the development and progression of chronic diseases. Multiple lines of evidence emerging from pre-clinical studies advocate the promising potential of this agent against various pathological conditions like cancer, cardiovascular diseases, diabetes, neurological disorders, inflammation, rheumatoid arthritis, etc., despite its poor bioavailability. Therefore, further studies are paramount in establishing its efficacy in clinical settings. Hence, the current review focuses on highlighting the underlying molecular mechanism of action of cardamonin and delineating its potential in the prevention and treatment of different chronic diseases.

17.
ACS Pharmacol Transl Sci ; 4(2): 834-847, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860206

RESUMO

Triterpenoids are ubiquitously distributed secondary metabolites, primarily scrutinized as a source of medication and preventive measures for various chronic diseases. The ease of isolation and excellent pharmacological properties of triterpenoids are notable reasons behind the exponential rise of extensive research on the bioactive triterpenoids over the past few decades. Herein, we attempted to explore the anticancer potential of the fruit extract of the ethnomedicinal plant Dillenia indica against oral squamous cell carcinoma (OSCC) and have exclusively attributed the efficacy of the extracts to the presence of two triterpenoids, namely, betulinic acid (BA) and koetjapic acid (KA). Preliminary in vitro screening of both BA and KA unveiled that the entities could impart cytotoxicity and induce apoptosis in OSCC cell lines, which were further well-supported by virtual screening based on ligand binding affinity and molecular dynamic simulations. Additionally, the aforementioned metabolites could significantly modulate the critical players such as Akt/mTOR, NF-κB, and JAK/STAT3 signaling pathways involved in the regulation of important hallmarks of cancer like cell survival, proliferation, invasion, angiogenesis, and metastasis. The present findings provide insight and immense scientific support and integrity to a piece of indigenous knowledge. However, in vivo validation is a requisite for moving to clinical trials and developing it as a commercial drug.

18.
Explor Target Antitumor Ther ; 1(5): 313-342, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-36046484

RESUMO

Cancer is one of the most dreadful diseases in the world with a mortality of 9.6 million annually. Despite the advances in diagnosis and treatment during the last couple of decades, it still remains a serious concern due to the limitations associated with currently available cancer management strategies. Therefore, alternative strategies are highly required to overcome these glitches. The importance of medicinal plants as primary healthcare has been well-known from time immemorial against various human diseases, including cancer. Commiphora wightii that belongs to Burseraceae family is one such plant which has been used to cure various ailments in traditional systems of medicine. This plant has diverse pharmacological properties such as antioxidant, antibacterial, antimutagenic, and antitumor which mostly owes to the presence of its active compound guggulsterone (GS) that exists in the form of Z- and E-isomers. Mounting evidence suggests that this compound has promising anticancer activities and was shown to suppress several cancer signaling pathways such as NF-κB/ERK/MAPK/AKT/STAT and modulate the expression of numerous signaling molecules such as the farnesoid X receptor, cyclin D1, survivin, caspases, HIF-1α, MMP-9, EMT proteins, tumor suppressor proteins, angiogenic proteins, and apoptotic proteins. The current review is an attempt to summarize the biological activities and diverse anticancer activities (both in vitro and in vivo) of the compound GS and its derivatives, along with its associated mechanism against various cancers.

19.
Life Sci ; 260: 118182, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781063

RESUMO

BACKGROUND: Chronic diseases are a major cause of mortality worldwide, and despite the recent development in treatment modalities, synthetic drugs have continued to show toxic side effects and development of chemoresistance, thereby limiting their application. The use of phytochemicals has gained attention as they show minimal side effects. Diosgenin is one such phytochemical which has gained importance for its efficacy against the life-threatening diseases, such as cardiovascular diseases, cancer, nervous system disorders, asthma, arthritis, diabetes, and many more. AIM: To evaluate the literature available on the potential of diosgenin and its analogs in modulating different molecular targets leading to the prevention and treatment of chronic diseases. METHOD: A detailed literature search has been carried out on PubMed for gathering information related to the sources, biosynthesis, physicochemical properties, biological activities, pharmacokinetics, bioavailability and toxicity of diosgenin and its analogs. KEY FINDINGS: The literature search resulted in many in vitro, in vivo and clinical trials that reported the efficacy of diosgenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK, etc., which play a crucial role in the development of most of the diseases. Reports have also revealed the safety of the compound and the adaptation of nanotechnological approaches for enhancing its bioavailability and pharmacokinetic properties. SIGNIFICANCE: Thus, the review summarizes the efficacy of diosgenin and its analogs for developing as a potent drug against several chronic diseases.


Assuntos
Doença Crônica/tratamento farmacológico , Diosgenina/uso terapêutico , Animais , Disponibilidade Biológica , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Fenômenos Químicos , Doença Crônica/prevenção & controle , Diosgenina/análogos & derivados , Diosgenina/farmacocinética , Humanos , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Fitoterapia , PubMed , Sementes/química , Transdução de Sinais/efeitos dos fármacos , Trigonella
20.
Expert Opin Drug Metab Toxicol ; 15(9): 705-733, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31361978

RESUMO

Introduction: Since ancient times, turmeric has been used in several folklore remedies against various ailments. The principal component of turmeric is curcumin and its efficacy has been advocated in various in vitro, in vivo and clinical studies for different chronic diseases. However, some studies suggest that curcumin bioavailability is a major problem. Areas covered: This article discusses over 200 clinical studies with curcumin that have demonstrated the pronounced protective role of this compound against cardiovascular diseases, inflammatory diseases, metabolic diseases, neurological diseases, skin diseases, liver diseases, various types of cancer, etc. The review also describes the combination of curcumin with many natural and synthetic compounds as well as various formulations of curcumin that have shown efficacy in multiple clinical studies. Expert opinion: The therapeutic potential of curcumin, as demonstrated by clinical trials has overpowered the myth that poor bioavailability of curcumin poses a problem. Low curcumin bioavailability in certain studies has been addressed by using higher concentrations of curcumin within nontoxic limits. Moreover, curcumin, in combination with other compounds or as formulations, has shown enhanced bioavailability. Hence, bioavailability is not a problem in the curcumin-mediated treatment of chronic diseases. Therefore, this golden nutraceutical presents a safe, low-cost and effective treatment modality for different chronic diseases.


Assuntos
Curcuma/química , Curcumina/administração & dosagem , Suplementos Nutricionais , Animais , Disponibilidade Biológica , Doença Crônica , Ensaios Clínicos como Assunto , Curcumina/farmacocinética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA