Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(22): 228102, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101371

RESUMO

Connecting polymer network fracture to molecular-level chain scission remains a quandary. While the Lake-Thomas model predicts the intrinsic fracture energy of a polymer network is the energy to rupture a layer of chains, it underestimates recent experiments by ∼1-2 orders of magnitude. Here we show that the intrinsic fracture energy of polymerlike networks stems from nonlocal energy dissipation by relaxing chains far from the crack tip using experiments and simulations of 2D and 3D networks with varying defects, dispersity, topologies, and length scales. Our findings not only provide physical insights into polymer network fracture but offer design principles for tough architected materials.

2.
Proc Natl Acad Sci U S A ; 121(30): e2410811121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39008682
3.
Adv Mater ; 36(27): e2403594, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38639424

RESUMO

Automated delivery of insulin based on continuous glucose monitoring is revolutionizing the way insulin-dependent diabetes is treated. However, challenges remain for the widespread adoption of these systems, including the requirement of a separate glucose sensor, sophisticated electronics and algorithms, and the need for significant user input to operate these costly therapies. Herein, a user-centric glucose-responsive cannula is reported for electronics-free insulin delivery. The cannula-made from a tough, elastomer-hydrogel hybrid membrane formed through a one-pot solvent exchange method-changes permeability to release insulin rapidly upon physiologically relevant varying glucose levels, providing simple and automated insulin delivery with no additional hardware or software. Two prototypes of the cannula are evaluated in insulin-deficient diabetic mice. The first cannula-an ends-sealed, subcutaneously inserted prototype-normalizes blood glucose levels for 3 d and controls postprandial glucose levels. The second, more translational version-a cannula with the distal end sealed and the proximal end connected to a transcutaneous injection port-likewise demonstrates tight, 3-d regulation of blood glucose levels when refilled twice daily. This proof-of-concept study may aid in the development of "smart" cannulas and next-generation insulin therapies at a reduced burden-of-care toll and cost to end-users.


Assuntos
Glicemia , Insulina , Insulina/administração & dosagem , Animais , Camundongos , Glicemia/análise , Cânula , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose/metabolismo , Sistemas de Liberação de Medicamentos/instrumentação , Hidrogéis/química , Sistemas de Infusão de Insulina , Elastômeros/química , Automação , Desenho de Equipamento
4.
Nat Commun ; 15(1): 5590, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961059

RESUMO

Polymeric thermal switches that can reversibly tune and significantly enhance their thermal conductivities are desirable for diverse applications in electronics, aerospace, automotives, and medicine; however, they are rarely achieved. Here, we report a polymer-based thermal switch consisting of an end-linked star-shaped thermoset with two independent thermal conductivity tuning mechanisms-strain and temperature modulation-that rapidly, reversibly, and cyclically modulate thermal conductivity. The end-linked star-shaped thermoset exhibits a strain-modulated thermal conductivity enhancement up to 11.5 at a fixed temperature of 60 °C (increasing from 0.15 to 2.1 W m-1 K-1). Additionally, it demonstrates a temperature-modulated thermal conductivity tuning ratio up to 2.3 at a fixed stretch of 2.5 (increasing from 0.17 to 0.39 W m-1 K-1). When combined, these two effects collectively enable the end-linked star-shaped thermoset to achieve a thermal conductivity tuning ratio up to 14.2. Moreover, the end-linked star-shaped thermoset demonstrates reversible tuning for over 1000 cycles. The reversible two-way tuning of thermal conductivity is attributed to the synergy of aligned amorphous chains, oriented crystalline domains, and increased crystallinity by elastically deforming the end-linked star-shaped thermoset.

5.
Sci Adv ; 9(50): eadj0411, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091402

RESUMO

Strain-induced crystallization (SIC) prevalently strengthens, toughens, and enables an elastocaloric effect in elastomers. However, the crystallinity induced by mechanical stretching in common elastomers (e.g., natural rubber) is typically below 20%, and the stretchability plateaus due to trapped entanglements. We report a class of elastomers formed by end-linking and then deswelling star polymers with low defects and no trapped entanglements, which achieve strain-induced crystallinity of up to 50%. The deswollen end-linked star elastomer (DELSE) reaches an ultrahigh stretchability of 12.4 to 33.3, scaling beyond the saturated limit of common elastomers. The DELSE also exhibits a high fracture energy of 4.2 to 4.5 kJ m-2 while maintaining low hysteresis. The heightened SIC and stretchability synergistically promote a high elastocaloric effect with an adiabatic temperature change of 9.3°C.

6.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333419

RESUMO

Endovascular procedures provide surgeons and other interventionalists with minimally invasive methods to treat vascular diseases by passing guidewires, catheters, sheaths and treatment devices into the vasculature to and navigate toward a treatment site. The efficiency of this navigation affects patient outcomes, but is frequently compromised by catheter "herniation", in which the catheter-guidewire system bulges out from the intended endovascular pathway so that the interventionalist can no longer advance it. Here, we showed herniation to be a bifurcation phenomenon that can be predicted and controlled using mechanical characterizations of catheter-guidewire systems and patientspecific clinical imaging. We demonstrated our approach in laboratory models and, retrospectively, in patients who underwent procedures involving transradial neurovascular procedures with an endovascular pathway from the wrist, up in the arm, around the aortic arch, and into the neurovasculature. Our analyses identified a mathematical navigation stability criterion that predicted herniation in all of these settings. Results show that herniation can be predicted through bifurcation analysis, and provide a framework for selecting catheter-guidewire systems to avoid herniation in specific patient anatomy.

7.
J Mech Behav Biomed Mater ; 119: 104459, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33887627

RESUMO

Endovascular catheter-based technologies have revolutionized the treatment of complex vascular pathology. Catheters and endovascular devices that can be maneuvered through tortuous arterial anatomy have enabled minimally invasive treatment in the peripheral arterial system. Although mechanical factors drive an interventionalist's choice of catheters and sheaths, these decisions are mostly made qualitative and based on personal experience and procedural pattern recognition. However, a definitive quantitative characterization of endovascular tools that are best suited for specific peripheral arterial beds is currently lacking. To establish a foundation for quantitative tool selection in the neurovascular and lower extremity peripheral arterial beds, we developed a nonlinear beam theory method to quantify catheter and sheath flexural rigidity. We applied this assessment to a sampling of commonly utilized commercially available peripheral arterial catheters and sheaths. Our results demonstrated that catheters and sheaths adopted for existing practice patterns to treat peripheral arterial disease in the lower extremities and neurovascular system have different but overlapping ranges of flexural rigidities that were not sensitive to luminal diameters within each procedure type. Our approach provides an accurate and effective method for characterization of flexural rigidity properties of catheters and sheaths, and a foundation for developing future technologies tailored for specific peripheral arterial systems.


Assuntos
Catéteres , Procedimentos Endovasculares , Cateteres de Demora , Extremidade Inferior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA