Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Neurochem ; 167(4): 520-537, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37822142

RESUMO

Amyloid-ß (Aß) and hyper-phosphorylated tau are key hallmarks of Alzheimer's disease (AD), with an accumulation of both proteins linked to hippocampal synaptic dysfunction. Recent evidence indicates that Aß drives mis-localisation of tau from axons to synapses, resulting in AMPA receptor (AMPAR) internalisation and impaired excitatory synaptic function. These tau-driven synaptic impairments are thought to underlie the cognitive deficits in AD. Consequently, limiting the synapto-toxic effects of tau may prevent AD-related cognitive deficits. Increasing evidence links leptin dysfunction with higher AD risk, and numerous studies have identified neuroprotective properties of leptin in AD models of Aß-induced toxicity. However, it is unclear if leptin protects against tau-related synaptic dysfunction. Here we show that Aß1-42 significantly increases dendritic and synaptic levels of tau and p-tau in hippocampal neurons, and these effects were blocked by leptin. In accordance with GSK-3ß being involved in tau phosphorylation, the protective effects of leptin involve PI 3-kinase (PI3K) activation and inhibition of GSK-3ß. Aß1-42 -driven synaptic targeting of tau was associated with the removal of GluA1-containing AMPARs from synapses, which was also inhibited by leptin-driven inhibition of GSK-3ß. Direct application of oligomeric tau to hippocampal neurons caused internalisation of GluA1-containing AMPARs and this effect was blocked by prior application of leptin. Similarly, leptin prevented the ability of tau to block induction of activity-dependent long-term potentiation (LTP) at hippocampal SC-CA1 synapses. These findings increase our understanding of the neuroprotective actions of leptin in the early pre-clinical stages of AD and further validate the leptin system as a therapeutic target in AD.


Assuntos
Doença de Alzheimer , Fosfatidilinositol 3-Quinases , Humanos , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Leptina/farmacologia , Doença de Alzheimer/metabolismo , Sinapses/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Fosforilação , Proteínas tau/metabolismo
2.
J Neurochem ; 165(6): 809-826, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36444683

RESUMO

Key pathological features of Alzheimer's disease (AD) include build-up of amyloid ß (Aß), which promotes synaptic abnormalities and ultimately leads to neuronal cell death. Metabolic dysfunction is known to influence the risk of developing AD. Impairments in the leptin system have been detected in AD patients, which has fuelled interest in targeting this system to treat AD. Increasing evidence supports pro-cognitive and neuroprotective actions of leptin and these beneficial effects of leptin are mirrored by a bioactive leptin fragment (leptin116-130 ). Here we extend these studies to examine the potential cognitive enhancing and neuroprotective actions of 8 six-amino acid peptides (hexamers) derived from leptin116-130 . In this study, we show that four of the hexamers (leptin116-121, 117-122, 118-123 and 120-125 ) replicate the ability of leptin to promote α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking and facilitate hippocampal synaptic plasticity. Moreover, the pro-cognitive effects of the hexamers were verified in behavioural studies, with the administration of leptin117-122 enhancing performance in episodic memory tasks. The bioactive hexamers replicated the neuroprotective actions of leptin by preventing the acute hippocampal synapto-toxic effects of Aß, and the chronic effects of Aß on neuronal cell viability, Aß seeding and tau phosphorylation. These findings provide further evidence to support leptin and leptin-derived peptides as potential therapeutics for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Animais , Peptídeos beta-Amiloides/metabolismo , Receptores de AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Leptina/farmacologia , Doença de Alzheimer/metabolismo , Plasticidade Neuronal/fisiologia , Hipocampo/metabolismo , Modelos Animais de Doenças
3.
Neurochem Res ; 44(3): 650-660, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28819795

RESUMO

Growing evidence indicates that the endocrine hormone leptin regulates hippocampal synaptic function in addition to its established role as a hypothalamic satiety signal. Indeed, numerous studies show that leptin facilitates the cellular events that underlie hippocampal learning and memory including activity-dependent synaptic plasticity and glutamate receptor trafficking, indicating that leptin may be a potential cognitive enhancer. Although there has been extensive investigation into the modulatory role of leptin at hippocampal Schaffer collateral (SC)-CA1 synapses, recent evidence indicates that leptin also potently regulates excitatory synaptic transmission at the anatomically distinct temporoammonic (TA) input to hippocampal CA1 neurons. The cellular mechanisms underlying activity-dependent synaptic plasticity at TA-CA1 synapses differ from those at SC-CA1 synapses and the TA input is implicated in spatial and episodic memory formation. Furthermore, the TA input is an early target for neurodegeneration in Alzheimer's disease (AD) and aberrant leptin function is linked to AD. Here, we review the evidence that leptin regulates hippocampal synaptic function at both SC- and TA-CA1 synapses and discuss the consequences for neurodegenerative disorders like AD.


Assuntos
Hipocampo/fisiologia , Leptina/metabolismo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Humanos , Transmissão Sináptica/fisiologia
4.
FASEB J ; 31(8): 3449-3466, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28461339

RESUMO

The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway is involved in numerous cellular processes and it is implicated in neurodegenerative disorders, like Alzheimer disease. Recent studies identified a crucial role for this pathway in activity-dependent long-term depression (LTD) at hippocampal Schaffer collateral (SC)-CA1 synapses. However, it is unclear whether JAK-STAT signaling also regulates excitatory synaptic function at the anatomically distinct temporoammonic (TA) input to CA1 neurons. Here we demonstrate that LTD at adult TA-CA1 synapses involves JAK-STAT signaling, but unlike SC-CA1 synapses, requires rapid gene transcription. TA-CA1 LTD requires NMDA receptor activation and is independent of PI3K or ERK signaling. JAK-STAT signaling was critical for TA-CA1 LTD as inhibition of JAK or STAT blocked LTD induction and prevented NMDA-induced AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor internalization in hippocampal neurons. Moreover, an increase in phosphorylated JAK2 and STAT3 accompanied chemical induction of LTD and AMPA receptor internalization. STAT3-driven gene transcription was required for LTD as inhibition of STAT3-DNA binding, nuclear export, and gene transcription all prevented LTD induction. These data indicate an essential role for canonical JAK-STAT signaling in activity-dependent LTD at TA-CA1 synapses and provide valuable insight into the role of the TA input in hippocampal synaptic plasticity.-McGregor, G., Irving, A. J., Harvey, J. Canonical JAK-STAT signaling is pivotal for long-term depression at adult hippocampal temporoammonic-CA1 synapses.


Assuntos
Região CA1 Hipocampal/fisiologia , Hipocampo/fisiologia , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Regulação da Expressão Gênica/fisiologia , Janus Quinases/genética , Masculino , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de Transcrição STAT/genética
5.
Cereb Cortex ; 27(10): 4769-4782, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27600840

RESUMO

A key pathology of Alzheimer's disease (AD) is amyloid ß (Aß) accumulation that triggers synaptic impairments and neuronal death. Metabolic disruption is common in AD and recent evidence implicates impaired leptin function in AD. Thus the leptin system may be a novel therapeutic target in AD. Indeed, leptin has cognitive enhancing properties and it prevents the aberrant effects of Aß on hippocampal synaptic function and neuronal viability. However, as leptin is a large peptide, development of smaller leptin-mimetics may be the best therapeutic approach. Thus, we have examined the cognitive enhancing and neuroprotective properties of known bioactive leptin fragments. Here we show that the leptin (116-130) fragment, but not leptin (22-56), mirrored the ability of leptin to promote AMPA receptor trafficking to synapses and facilitate activity-dependent hippocampal synaptic plasticity. Administration of leptin (116-130) also mirrored the cognitive enhancing effects of leptin as it enhanced performance in episodic-like memory tests. Moreover, leptin (116-130) prevented hippocampal synaptic disruption and neuronal cell death in models of amyloid toxicity. These findings establish further the importance of the leptin system as a therapeutic target in AD.


Assuntos
Cognição/efeitos dos fármacos , Hipocampo/metabolismo , Leptina/farmacologia , Fragmentos de Peptídeos/farmacologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Cognição/fisiologia , Humanos , Leptina/metabolismo , Memória/efeitos dos fármacos , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
6.
J Neurophysiol ; 112(8): 2026-35, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25031259

RESUMO

The higher cognitive functions of insects are dependent on their mushroom bodies (MBs), which are particularly large in social insects such as honeybees. MB Kenyon cells (KCs) receive multisensory input and are involved in associative learning and memory. In addition to receiving sensory input via excitatory nicotinic synapses, KCs receive inhibitory GABAergic input from MB feedback neurons. Cultured honeybee KCs exhibit ionotropic GABA receptor currents, but the properties of GABA-mediated inhibition in intact MBs are currently unknown. Here, using whole cell recordings from KCs in acutely isolated honeybee brain, we show that KCs exhibit a tonic current that is inhibited by picrotoxin but not by bicuculline. Bath application of GABA (5 µM) and taurine (1 mM) activate a tonic current in KCs, but l-glutamate (0.1-0.5 mM) has no effect. The tonic current is strongly potentiated by the allosteric GABAA receptor modulator pentobarbital and is reduced by inhibition of Ca(2+) channels with Cd(2+) or nifedipine. Noise analysis of the GABA-evoked current gives a single-channel conductance value for the underlying receptors of 27 ± 3 pS, similar to that of resistant to dieldrin (RDL) receptors. The amount of injected current required to evoke action potential firing in KCs is significantly lower in the presence of picrotoxin. KCs recorded in an intact honeybee head preparation similarly exhibit a tonic GABA receptor conductance that reduces neuronal excitability, a property that is likely to contribute to the sparse coding of sensory information in insect MBs.


Assuntos
Encéfalo/fisiologia , Corpos Pedunculados/fisiologia , Inibição Neural , Neurônios/fisiologia , Receptores de GABA/fisiologia , Animais , Abelhas , Encéfalo/citologia , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Corpos Pedunculados/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Picrotoxina/farmacologia , Ácido gama-Aminobutírico/farmacologia
7.
Mol Brain ; 16(1): 16, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709268

RESUMO

It is well documented that 17ß estradiol (E2) regulates excitatory synaptic transmission at hippocampal Shaffer-collateral (SC)-CA1 synapses, via activation of the classical estrogen receptors (ERα and ERß). Hippocampal CA1 pyramidal neurons are also innervated by the temporoammonic (TA) pathway, and excitatory TA-CA1 synapses are reported to be regulated by E2. Recent studies suggest a role for the novel G-protein coupled estrogen receptor (GPER1) at SC-CA1 synapses, however, the role of GPER1 in mediating the effects of E2 at juvenile TA-CA1 synapses is unclear. Here we demonstrate that the GPER1 agonist, G1 induces a persistent, concentration-dependent (1-10 nM) increase in excitatory synaptic transmission at TA-CA1 synapses and this effect is blocked by selective GPER1 antagonists. The ability of GPER1 to induce this novel form of chemical long-term potentiation (cLTP) was prevented following blockade of N-methyl-D-aspartate (NMDA) receptors, and it was not accompanied by any change in paired pulse facilitation ratio (PPR). GPER1-induced cLTP involved activation of ERK but was independent of phosphoinositide 3-kinase (PI3K) signalling. Prior treatment with philanthotoxin prevented the effects of G1, indicating that synaptic insertion of GluA2-lacking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors underlies GPER1-induced cLTP. Furthermore, activity-dependent LTP occluded G1-induced cLTP and vice versa, indicating that these processes have overlapping expression mechanisms. Activity-dependent LTP was blocked by the GPER1 antagonist, G15, suggesting that GPER1 plays a role in NMDA-dependent LTP at juvenile TA-CA1 synapses. These findings add a new dimension to our understanding of GPER1 in modulating neuronal plasticity with relevance to age-related neurodegenerative conditions.


Assuntos
Potenciação de Longa Duração , Receptores de Estrogênio , Potenciação de Longa Duração/fisiologia , Receptores de Estrogênio/metabolismo , Receptores de AMPA/metabolismo , N-Metilaspartato/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Hipocampo/metabolismo , Estrogênios/farmacologia , Sinapses/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas de Ligação ao GTP/metabolismo
8.
Front Pharmacol ; 13: 882158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784728

RESUMO

It is well documented that the endocrine hormone, leptin controls energy homeostasis by providing key signals to specific hypothalamic nuclei. However, our knowledge of leptin's central actions has advanced considerably over the last 20 years, with the hippocampus now established as an important brain target for this hormone. Leptin receptors are highly localised to hippocampal synapses, and increasing evidence reveals that activation of synaptically located leptin receptors markedly impacts cognitive processes, and specifically hippocampal-dependent learning and memory. Here, we review the recent actions of leptin at hippocampal synapses and explore the consequences for brain health and disease.

9.
Vitam Horm ; 118: 315-336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35180931

RESUMO

Increasing evidence indicates that the metabolic hormone, leptin markedly influences the functioning of the hippocampus. In particular, exposure to leptin results in persistent changes in synaptic efficacy at both temporoammonic (TA) and Schaffer Collateral (SC) inputs to hippocampal CA1 neurons. The ability of leptin to regulate TA-CA1 and SC-CA1 synapses has important functional implications, as both synaptic connections play important roles in hippocampal-dependent learning and memory. Here we review the modulatory actions of the hormone leptin at these hippocampal CA1 synapses and explore the impact on learning and memory processes.


Assuntos
Leptina , Receptores de N-Metil-D-Aspartato , Hipocampo/metabolismo , Humanos , Leptina/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia
10.
J Neurosci ; 30(11): 4088-101, 2010 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-20237279

RESUMO

The hormone leptin can cross the blood-brain barrier and influences numerous brain functions (Harvey, 2007). Indeed, recent studies have demonstrated that leptin regulates activity-dependent synaptic plasticity in the CA1 region of the hippocampus (Shanley et al., 2001; Li et al., 2002; Durakoglugil et al., 2005; Moult et al., 2009). It is well documented that trafficking of AMPA receptors is pivotal for hippocampal synaptic plasticity (Collingridge et al., 2004), but there is limited knowledge of how hormonal systems like leptin influence this process. In this study we have examined how leptin influences AMPA receptor trafficking and in turn how this impacts on excitatory synaptic function. Here we show that leptin preferentially increases the cell surface expression of GluR1 and the synaptic density of GluR2-lacking AMPA receptors in adult hippocampal slices. The leptin-induced increase in surface GluR1 required NMDA receptor activation and was associated with an increase in cytoplasmic PtdIns(3,4,5)P(3) levels. In addition, leptin enhanced phosphorylation of the lipid phosphatase PTEN which inhibits PTEN function and elevates PtdIns(3,4,5)P(3) levels. Moreover, inhibition of PTEN mimicked and occluded the effects of leptin on GluR1 trafficking and excitatory synaptic strength. These data indicate that leptin, via a novel pathway involving PTEN inhibition, promotes GluR1 trafficking to hippocampal synapses. This process has important implications for the role of leptin in hippocampal synaptic function in health and disease.


Assuntos
Leptina/fisiologia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Receptores de AMPA/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Hipocampo/metabolismo , Humanos , Masculino , Dados de Sequência Molecular , PTEN Fosfo-Hidrolase/fisiologia , Fosfatos de Fosfatidilinositol/biossíntese , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatos de Fosfatidilinositol/fisiologia , Fosforilação , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Transfecção
11.
Pharmaceuticals (Basel) ; 14(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440796

RESUMO

It is widely accepted that the endocrine hormone leptin controls food intake and energy homeostasis via activation of leptin receptors expressed on hypothalamic arcuate neurons. The hippocampal formation also displays raised levels of leptin receptor expression and accumulating evidence indicates that leptin has a significant impact on hippocampal synaptic function. Thus, cellular and behavioural studies support a cognitive enhancing role for leptin as excitatory synaptic transmission, synaptic plasticity and glutamate receptor trafficking at hippocampal Schaffer collateral (SC)-CA1 synapses are regulated by leptin, and treatment with leptin enhances performance in hippocampus-dependent memory tasks. Recent studies indicate that hippocampal temporoammonic (TA)-CA1 synapses are also a key target for leptin. The ability of leptin to regulate TA-CA1 synapses has important functional consequences as TA-CA1 synapses are implicated in spatial and episodic memory processes. Moreover, degeneration is initiated in the TA pathway at very early stages of Alzheimer's disease, and recent clinical evidence has revealed links between plasma leptin levels and the incidence of Alzheimer's disease (AD). Additionally, accumulating evidence indicates that leptin has neuroprotective actions in various AD models, whereas dysfunctions in the leptin system accelerate AD pathogenesis. Here, we review the data implicating the leptin system as a potential novel target for AD, and the evidence that boosting the hippocampal actions of leptin may be beneficial.

12.
Prog Lipid Res ; 82: 101098, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33895229

RESUMO

Significant advances have been made in our understanding of the hormone, leptin and its CNS actions in recent years. It is now evident that leptin has a multitude of brain functions, that extend beyond its established role in the hypothalamic control of energy balance. Additional brain regions including the hippocampus are important targets for leptin, with a high density of leptin receptors (LepRs) expressed in specific hippocampal regions and localised to CA1 synapses. Extensive evidence indicates that leptin has pro-cognitive actions, as it rapidly modifies synaptic efficacy at excitatory Schaffer collateral (SC)-CA1 and temporoammonic (TA)-CA1 synapses and enhances performance in hippocampal-dependent memory tasks. There is a functional decline in hippocampal responsiveness to leptin with age, with significant reductions in the modulatory effects of leptin at SC-CA1 and TA-CA1 synapses in aged, compared to adult hippocampus. As leptin has pro-cognitive effects, this decline in leptin sensitivity is likely to have negative consequences for cognitive function during the aging process. Here we review how evaluation of the hippocampal actions of leptin has improved our knowledge of the regulatory brain functions of leptin in health and provided significant insight into the impact of leptin in age-related neurodegenerative disorders linked to cognitive decline.


Assuntos
Hipocampo , Leptina , Hipocampo/metabolismo , Leptina/metabolismo , Sinapses/metabolismo
13.
Vitam Horm ; 115: 105-127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33706945

RESUMO

It is widely accepted that the metabolic hormone leptin regulates food intake and body weight via activation of hypothalamic leptin receptors. However, as leptin receptors are also highly expressed in other brain regions, such as the hippocampus, alterations in leptin responsiveness also impacts on key functions of the hippocampus, like learning and memory. Within the hippocampus, high levels of leptin receptors are expressed at excitatory synapses, and in accordance with a synaptic localization, leptin potently regulates synaptic transmission at both Schaffer collateral (SC) and temporoammonic (TA) inputs to CA1 pyramidal neurons. Increasing evidence from cellular and behavioral studies examining leptin action at CA1 synapses support the notion that leptin is a potential cognitive enhancer. However, the capacity of leptin to regulate synaptic efficacy at SC-CA1 and TA-CA1 synapses declines in an age-dependent manner. Moreover, clinical evidence that supports a link between circulating leptin levels and the risk of the age-related neurodegenerative disorder, Alzheimer's disease (AD) is accumulating. Consequently, it has been proposed that the leptin system is a potential therapeutic target in AD, and that boosting the hippocampal actions of leptin may be beneficial in the treatment of AD. Here we review recent progress in our understanding of the neuronal and hippocampal synaptic functions that are regulated by leptin and how alterations in the leptin system influence age-related CNS-related disorders like AD.


Assuntos
Hipocampo , Leptina , Hipocampo/metabolismo , Humanos , Leptina/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
14.
Br J Pharmacol ; 177(3): 642-655, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31637699

RESUMO

BACKGROUND AND PURPOSE: 17ß estradiol (E2) rapidly regulates excitatory synaptic transmission at the classical Schaffer collateral (SC) input to hippocampal CA1 neurons. However, the impact of E2 on excitatory synaptic transmission at the distinct temporoammonic (TA) input to CA1 neurons and the oestrogen receptors involved is less clear. EXPERIMENTAL APPROACH: Extracellular recordings were used to monitor excitatory synaptic transmission in hippocampal slices from juvenile male (P11-24) Sprague Dawley rats. Immunocytochemistry combined with confocal microscopy was used to monitor the surface expression of the AMPA receptor (AMPAR) subunit, GluA1 in hippocampal neurons cultured from neonatal (P0-3) rats. KEY RESULTS: Here, we show that E2 induces a novel form of LTP at TA-CA1 synapses, an effect mirrored by the ERα agonist, PPT, and blocked by an ERα antagonist. ERα-induced LTP is NMDA receptor (NMDAR)-dependent and involves a postsynaptic expression mechanism that requires PI 3-kinase signalling and synaptic insertion of GluA2-lacking AMPARs. ERα-induced LTP has overlapping expression mechanisms with classical Hebbian LTP, as HFS-induced LTP occluded PPT-induced LTP and vice versa. In addition, activity-dependent LTP was blocked by the ERα antagonist, suggesting that ERα activation is involved in NMDA-LTP at TA-CA1 synapses. CONCLUSION AND IMPLICATIONS: ERα induces a novel form of LTP at juvenile male hippocampal TA-CA1 synapses. As TA-CA1 synapses are implicated in episodic memory processes and are an early target for neurodegeneration, these findings have important implications for the role of oestrogens in CNS health and neurodegenerative disease.


Assuntos
Receptor alfa de Estrogênio , Doenças Neurodegenerativas , Animais , Hipocampo/metabolismo , Potenciação de Longa Duração , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
15.
Nat Rev Drug Discov ; 19(9): 609-633, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32709961

RESUMO

The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner - a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Metabolismo Energético/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Animais , Glicólise/fisiologia , Humanos , Fosforilação Oxidativa
16.
J Neurochem ; 108(3): 685-96, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19054283

RESUMO

The hormone leptin crosses the blood brain barrier and regulates numerous neuronal functions, including hippocampal synaptic plasticity. Here we show that application of leptin resulted in the reversal of long-term potentiation (LTP) at hippocampal CA1 synapses. The ability of leptin to depotentiate CA1 synapses was concentration-dependent and it displayed a distinct temporal profile. Leptin-induced depotentiation was not associated with any change in the paired pulse facilitation ratio or the coefficient of variance, indicating a post-synaptic locus of expression. Moreover, the synaptic activation of NMDA receptors was required for leptin-induced depotentiation as the effects of leptin were blocked by the competitive NMDA receptor antagonist, D-aminophosphovaleric acid (D-AP5). The signaling mechanisms underlying leptin-induced depotentiation involved activation of the calcium/calmodulin-dependent protein phosphatase, calcineurin, but were independent of c-jun NH(2) terminal kinase. Furthermore, leptin-induced depotentiation was accompanied by a reduction in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor rectification indicating that loss of glutamate receptor 2 (GluR2)-lacking AMPA receptors underlies this process. These data indicate that leptin reverses hippocampal LTP via a process involving calcineurin-dependent internalization of GluR2-lacking AMPA receptors which further highlights the key role for this hormone in regulating hippocampal synaptic plasticity and neuronal development.


Assuntos
Hipocampo/efeitos dos fármacos , Leptina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Sinapses/efeitos dos fármacos , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Calcineurina/fisiologia , Estimulação Elétrica , Eletrofisiologia , Ativação Enzimática/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Sinapses/metabolismo
17.
J Neurochem ; 108(1): 190-201, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19094063

RESUMO

The hormone leptin has widespread actions in the CNS. Indeed, leptin markedly influences hippocampal excitatory synaptic transmission and synaptic plasticity. However, the effects of leptin on fast inhibitory synaptic transmission in the hippocampus have not been evaluated. Here, we show that leptin modulates GABA(A) receptor-mediated synaptic transmission onto hippocampal CA1 pyramidal cells. Leptin promotes a rapid and reversible increase in the amplitude of evoked GABA(A) receptor-mediated inhibitory synaptic currents (IPSCs); an effect that was paralleled by increases in the frequency and amplitude of miniature IPSCs, but with no change in paired pulse ratio or coefficient of variation, suggesting a post-synaptic expression mechanism. Following washout of leptin, a persistent depression (inhibitory long-lasting depression) of evoked IPSCs was observed. Whole-cell dialysis or bath application of inhibitors of phosphoinositide 3 (PI 3)-kinase or Akt prevented leptin-induced enhancement of IPSCs indicating involvement of a post-synaptic PI 3-kinase/Akt-dependent pathway. In contrast, blockade of PI 3-kinase or Akt activity failed to alter the ability of leptin to induce inhibitory long-lasting depression, suggesting that this process is independent of PI 3-kinase/Akt. In conclusion these data indicate that the hormone leptin bi-directionally modulates GABA(A) receptor-mediated synaptic transmission in the hippocampus. These findings have important implications for the role of this hormone in regulating hippocampal pyramidal neuron excitability.


Assuntos
Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Leptina/farmacologia , Neurônios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Feminino , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Hipocampo/citologia , Masculino , Muscimol/farmacologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Ratos , Ratos Sprague-Dawley
18.
Biochem Soc Trans ; 37(Pt 6): 1364-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19909277

RESUMO

It is well established that leptin is a circulating hormone that enters the brain and regulates food intake and body weight via its hypothalamic actions. However, it is also known that leptin receptors are widely expressed in the CNS (central nervous system), and evidence is accumulating that leptin modulates many neuronal functions. In particular, recent studies have indicated that leptin plays an important role in the regulation of hippocampal synaptic plasticity. Indeed leptin-insensitive rodents display impairments in hippocampal synaptic plasticity and defects in spatial memory tasks. We have also shown that leptin facilitates the induction of hippocampal LTP (long-term potentiation) via enhancing NMDA (N-methyl-D-aspartate) receptor function and that leptin has the ability to evoke a novel form of NMDA receptor-dependent LTD (long-term depression). In addition, leptin promotes rapid alterations in hippocampal dendritic morphology and synaptic density, which are likely to contribute to the effects of this hormone on excitatory synaptic strength. Recent studies have demonstrated that trafficking of AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptors is pivotal for activity-dependent hippocampal synaptic plasticity. However, little is known about how AMPA receptor trafficking processes are regulated by hormonal systems. In the present paper, we discuss evidence that leptin rapidly alters the trafficking of AMPA receptors to and away from hippocampal CA1 synapses. The impact of these leptin-driven changes on hippocampal excitatory synaptic function are discussed.


Assuntos
Leptina/metabolismo , Receptores de Glutamato/metabolismo , Animais , Hipocampo/citologia , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Receptores para Leptina/metabolismo , Sinapses/metabolismo
19.
Pharmacol Res Perspect ; 7(6): e00542, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768260

RESUMO

The G-protein-coupled receptor GPR132, also known as G2A, is activated by 9-hydroxyoctadecadienoic acid (9-HODE) and other oxidized fatty acids. Other suggested GPR132 agonists including lysophosphatidylcholine (LPC) have not been readily reproduced. Here, we identify N-acylamides in particular N-acylglycines, as lipid activators of GPR132 with comparable activity to 9-HODE. The order-of-potency is N-palmitoylglycine > 9-HODE ≈ N-linoleoylglycine > linoleamide > N-oleoylglycine ≈ N-stereoylglycine > N-arachidonoylglycine > N-docosehexanoylglycine. Physiological concentrations of N-acylglycines in tissue are sufficient to activate GPR132. N-linoleoylglycine and 9-HODE also activate rat and mouse GPR132, despite limited sequence conservation to human. We describe pharmacological tools for GPR132, identified through drug screening. SKF-95667 is a novel GPR132 agonist. SB-583831 and SB-583355 are peptidomimetic molecules containing core amino acids (glycine and phenylalanine, respectively), and structurally related to previously described ligands. A telmisartan analog, GSK1820795A, antagonizes the actions of N-acylamides at GPR132. The synthetic cannabinoid CP-55 940 also activates GPR132. Molecular docking to a homology model suggested a site for lipid binding, predicting the acyl side-chain to extend into the membrane bilayer between TM4 and TM5 of GPR132. Small-molecule ligands are envisaged to occupy a "classical" site encapsulated in the 7TM bundle. Structure-directed mutagenesis indicates a critical role for arginine at position 203 in transmembrane domain 5 to mediate GPR132 activation by N-acylamides. Our data suggest distinct modes of binding for small-molecule and lipid agonists to the GPR132 receptor. Antagonists, such as those described here, will be vital to understand the physiological role of this long-studied target.


Assuntos
Proteínas de Ciclo Celular/agonistas , Glicina/análogos & derivados , Ácidos Palmíticos/farmacologia , Peptidomiméticos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Células CHO , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cricetulus , Cicloexanóis/farmacologia , Antagonismo de Drogas , Ácidos Graxos Insaturados/farmacologia , Glicina/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Homologia Estrutural de Proteína , Telmisartan/análogos & derivados , Telmisartan/farmacologia
20.
Neurosci Lett ; 438(1): 17-21, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18472337

RESUMO

As recent evidence has revealed a pro-survival role for the anti-obesity hormone leptin in the nervous system, we investigated the generality of this finding on cerebellar Purkinje and granule neurons in vitro. We found that whilst leptin promoted cerebellar Purkinje neuron survival, it had no affect on cerebellar granule cells. In addition, we discovered that leptin promoted both the outgrowth of neurites from cerebellar Purkinje neurons and increased the complexity of the neurite arbor. Thus, leptin has different effects on two neighbouring populations of neurons within the cerebellum implying specificity of its actions in the central nervous system.


Assuntos
Diferenciação Celular/fisiologia , Córtex Cerebelar/crescimento & desenvolvimento , Córtex Cerebelar/metabolismo , Leptina/metabolismo , Fatores de Crescimento Neural/metabolismo , Células de Purkinje/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebelar/citologia , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Relação Dose-Resposta a Droga , Leptina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/farmacologia , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Células de Purkinje/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores para Leptina/agonistas , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA