Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Genomics ; 25(2): 69-87, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38751601

RESUMO

SARS-CoV-2 is a highly contagious and transmissible viral infection that first emerged in 2019 and since then has sparked an epidemic of severe respiratory problems identified as "coronavirus disease 2019" (COVID-19) that causes a hazard to human life and safety. The virus developed mainly from bats. The current epidemic has presented a significant warning to life across the world by showing mutation. There are different tests available for testing Coronavirus, and RT-PCR is the best, giving more accurate results, but it is also time-consuming. There are different options available for treating n-CoV-19, which include medications such as Remdesivir, corticosteroids, plasma therapy, Dexamethasone therapy, etc. The development of vaccines such as BNT126b2, ChAdOX1, mRNA-1273 and BBIBP-CorV has provided great relief in dealing with the virus as they decreased the mortality rate. BNT126b2 and ChAdOX1 are two n-CoV vaccines found to be most effective in controlling the spread of infection. In the future, nanotechnology-based vaccines and immune engineering techniques can be helpful for further research on Coronavirus and treatment of this deadly virus. The existing knowledge about the existence of SARS-CoV-2, along with its variants, is summarized in this review. This review, based on recently published findings, presents the core genetics of COVID-19, including heritable characteristics, pathogenesis, immunological biomarkers, treatment options and clinical updates on the virus, along with patents.

2.
Drug Dev Ind Pharm ; 45(6): 946-958, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30767678

RESUMO

OBJECTIVE: To prepare and characterize an optimized phospholipid complex of Ursolic acid (UA) to overcome the poor pharmacokinetic properties and to investigate the impact of the complex on hepatoprotective activity and bioavailability in animal model. SIGNIFICANCE: UA is a potential phytoconstituent obtained from several plant sources, which has been explored for its diverse pharmacological activities including hepatoprotection. Its major limitation is poor absorption, rapid elimination, and hence low bioavailability after administration. METHODS: Response surface methodology was adopted to formulate an optimized (UA) complex. The complex was characterized by differential thermal analysis (DTA), Fourier transform-Infrared Spectroscopy, Powder X ray Diffraction, molecular docking, etc. The physico-chemical profile (solubility, oil/water partition coefficient) and in vitro dissolution profile was estimated. The formulation was then used to study hepatoprotective activity and bioavailability in animal models. RESULTS: Results showed that the phospholipid complex of UA has enhanced the hepatoprotective potential as compared to pure UA at the same dose level. The complex restored the levels of serum hepatic marker enzymes with respect to untreated group and increased the relative bioavailability of UA in rat plasma by 8.49-fold in comparison with pure compound at the same dose level. It enhanced the elimination half-life (t1/2 el) from 0.69 ± 1.76 to 8.28 ± 1.98 h. CONCLUSION: Complexation of UA with phospholipid markedly enhanced the hepatoprotective potential of UA by improving its bioavailability and pharmacokinetic parameters. Novelty statement The present article deals with rational optimization of the formulation parameters for phospholipid complex of ursolic acid by Response Surface Methodology analysis, characterizing the formulation by in silico approach apart from conventional instrumental techniques, and evaluating the in vitro dissolution, pharmacokinetics, and hepatoprotective activity of the complex in animals. Novelty statement The present article deals with rational optimization of the formulation parameters for phospholipid complex of ursolic acid by Response Surface Methodology analysis, characterizing the formulation by in silico approach apart from conventional instrumental techniques, and evaluating the in vitro dissolution, pharmacokinetics, and hepatoprotective activity of the complex in animals.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Excipientes/química , Fígado/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Triterpenos/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Simulação por Computador , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Meia-Vida , Humanos , Fígado/patologia , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Tamanho da Partícula , Fosfolipídeos/química , Substâncias Protetoras/química , Substâncias Protetoras/uso terapêutico , Ratos , Ratos Wistar , Solubilidade , Triterpenos/química , Triterpenos/uso terapêutico , Difração de Raios X , Ácido Ursólico
3.
Artigo em Inglês | MEDLINE | ID: mdl-38310453

RESUMO

Inflammatory bowel disease (IBD) is a life-threatening complex disease. It causes chronic intestinal inflammation in GIT. IBD significantly affects people's lifestyles and carries a high risk of colon cancer. IBD involves the rectum, ileum, and colon, with clinical manifestations of bloody stools, weight loss, diarrhea, and abdominal pain. The prevalence of inflammatory disease is increasing dramatically worldwide. Over 16 million people are affected annually in India, with an economic burden of $6.8- $8.8 billion for treatment. Modern medicine can manage IBD as immunosuppressive agents, corticosteroids, tumor necrosis factor antagonists, integrin blockers, and amino-salicylates. However, these approaches are allied with limitations such as limited efficacy, drug resistance, undesired side effects, and overall cost, which cannot be ignored. Hence, the herbal bioactives derived from various plant resources can be employed in managing IBD. Science Direct, PubMed, Google, and Scopus databases have been searched for conclusively relevant herbal plant-based anti-inflammatory agent compositions. Studies were screened through analysis of previously published review articles. Eminent herbal bioactives, namely curcumin, resveratrol, ellagic acid, silybin, catechin, kaempferol, icariin, glycyrrhizin acid, berberine, quercetin, rutin, and thymol are reported to be effective against IBD. Herbal leads are promising treatment options for IBD; they have been shown to display antiinflammatory and antioxidant properties by targeting enzymes and regulating the expressions of various inflammatory mediators. Natural products have been reported to have anti-inflammatory properties in various clinical and preclinical studies, and some are available as herbal preparations. Herbal medicine would be promising in association with the implication of a novel drug delivery system for managing IBD.

4.
Curr Pharm Biotechnol ; 25(5): 599-622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807329

RESUMO

Colorectal cancer (CRC) is a complex and multifactorial disorder in middle-aged people. Several modern medicines are available for treating and preventing it. However, their therapeutic uses are limited due to drawbacks, such as gastric perforation, diarrhea, intestinal bleeding, abdominal cramps, hair loss, nausea, vomiting, weight loss, and adverse reactions. Hence, there is a continuous quest for safe and effective medicines to manage human health problems, like CRC. In this context, herbal medicines are considered an alternative disease control system. It has become popular in countries, like American, European, and Asian, due to its safety and effectiveness, which has been practiced for 1000 years. During the last few decades, herbal medicines have been widely explored through multidisciplinary fields for getting active compounds against human diseases. Several herbal bioactives, like curcumin, glycyrrhizin, paclitaxel, chlorogenic acid, gallic acid, catechin, berberine, ursolic acid, betulinic acid, chrysin, resveratrol, quercetin, etc., have been found to be effective against CRC. However, their pharmacological applications are limited due to low bioavailability and therapeutic efficacy apart from their several health benefits. An effective delivery system is required to increase their bioavailability and efficacy. Therefore, targeted novel drug delivery approaches are promising for improving these substances' solubility, bioavailability, and therapeutic effects. Novel carrier systems, such as liposomes, nanoparticles, micelles, microspheres, dendrimers, microbeads, and hydrogels, are promising for delivering poorly soluble drugs to the target site, i.e., the colon. Thus, the present review is focused on the pathophysiology, molecular pathways, and diagnostic and treatment approaches for CRC. Moreover, an emphasis has been laid especially on herbal bioactive-based novel delivery systems and their clinical updates.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Portadores de Fármacos/química , Animais , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/química , Compostos Fitoquímicos/administração & dosagem , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/química
5.
Curr Pharm Des ; 30(6): 420-439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299405

RESUMO

Ulcerative colitis (UC) is a multifactorial disorder of the large intestine, especially the colon, and has become a challenge globally. Allopathic medicines are primarily available for the treatment and prevention of UC. However, their uses are limited due to several side effects. Hence, an alternative therapy is of utmost importance in this regard. Herbal medicines are considered safe and effective for managing human health problems. Chlorogenic acid (CGA), the herbal-derived bioactive, has been reported for pharmacological effects like antiinflammatory, immunomodulatory, antimicrobial, hepatoprotective, antioxidant, anticancer, etc. This review aims to understand the antiinflammatory and chemopreventive potential of CGA against UC. Apart from its excellent therapeutic potential, it has been associated with low absorption and poor oral bioavailability. In this context, colon-specific novel drug delivery systems (NDDS)are pioneering to overcome these problems. The pertinent literature was compiled from a thorough search on various databases such as ScienceDirect, PubMed, Google Scholar, etc., utilizing numerous keywords, including ulcerative colitis, herbal drugs, CGA, pharmacological activities, mechanism of actions, nanoformulations, clinical updates, and many others. Relevant publications accessed till now were chosen, whereas non-relevant papers, unpublished data, and non-original articles were excluded. The present review comprises recent studies on pharmacological activities and novel drug delivery systems of CGA for managing UC. In addition, the clinical trials of CGA against UC have been discussed.


Assuntos
Ácido Clorogênico , Ensaios Clínicos como Assunto , Colite Ulcerativa , Sistemas de Liberação de Medicamentos , Humanos , Colite Ulcerativa/tratamento farmacológico , Ácido Clorogênico/administração & dosagem , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Ácido Clorogênico/química , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico
6.
Curr Pharm Des ; 30(11): 841-858, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38462835

RESUMO

Among the primary causes of mortality in today's world is cancer. Many drugs are employed to give lengthy and severe chemotherapy and radiation therapy, like nitrosoureas (Cisplatin, Oxaliplatin), Antimetabolites (5-fluorouracil, Methotrexate), Topoisomerase inhibitors (Etoposide), Mitotic inhibitors (Doxorubicin); such treatment is associated with significant adverse effects. Antitumor antibiotics have side effects similar to chemotherapy and radiotherapy. Selenium (Se) is an essential trace element for humans and animals, and additional Se supplementation is required, particularly for individuals deficient in Se. Due to its unique features and high bioactivities, selenium nanoparticles (SeNPs), which act as a supplement to counter Se deficiency, have recently gained worldwide attention. This study presented a safer and more economical way of preparing stable SeNPs. The researcher has assessed the antiproliferative efficiency of SeNPs-based paclitaxel delivery systems against tumor cells in vitro with relevant mechanistic visualization. SeNPs stabilized by Pluronic F-127 were synthesized and studied. The significant properties and biological activities of PTX-loaded SeNPs on cancer cells from the lungs, breasts, cervical, and colons. In one study, SeNPs were formulated using chitosan (CTS) polymer and then incorporated into CTS/citrate gel, resulting in a SeNPs-loaded chitosan/citrate complex; in another study, CTS was used in the synthesis of SeNPs and then situated into CTS/citrate gel, resulting in Se loaded nanoparticles. These formulations were found to be more successful in cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Selênio , Humanos , Selênio/química , Selênio/farmacologia , Selênio/administração & dosagem , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Proliferação de Células/efeitos dos fármacos
7.
Curr Drug Deliv ; 21(5): 631-644, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36740794

RESUMO

Cancer is one of the deadliest illnesses of the 21st century. Chemotherapy and radiation therapies both have considerable side effects. Antitumor antibiotics are one of them. Coughs, common colds, fevers, laryngitis, and infectious disorders have all been treated with Andrographis paniculata for centuries. Extracts of Andrographis effectively treat various ailments, as well as cancer. The most active molecule in Andrographis paniculata is andrographolide a, diterpene, and lactone. Andrographis paniculata and its derivatives have long been used to treat various ailments. Anti-inflammatory and cancerfighting characteristics have been observed in Andrographolide. Andrographolide, a diterpene lactone separated from Andrographis paniculata, has also been shown to have important criticalessential biological protective properties. It has also been suggested that it could be used to treat major human diseases like-rheumatoid like rheumatoid, colitis, and Parkinsons disease. This summary aims to highlight Andrographolide as a promising cancer treatment option. Several databases were searched for andrographolides cytotoxic/anti-cancer effects in pre-clinical and clinical research to serve this purpose. Several studies have shown that Andrographolide is helpful in cancer medication, as detailed in this review.


Assuntos
Andrographis , Diterpenos , Neoplasias , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Andrographis paniculata , Sistemas de Liberação de Fármacos por Nanopartículas , Neoplasias/tratamento farmacológico , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Lactonas
8.
Curr Drug Deliv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38265385

RESUMO

Malaria is still a major endemic disease transmitted in humans via Plasmodium-infected mosquitoes. The eradication of malarial parasites and the control measures have been rigorously and extensively deployed by local and international health organizations. Malaria's recurrence is a result of the failure to entirely eradicate it. The drawbacks related to malarial chemotherapy, non-specific targeting, multiple drug resistance, requirement of high doses, intolerable toxicity, indefinable complexity of Plasmodium's life cycle, and advent of drug-resistant strains of P. falciparum are the causes of the ineffective eradication measures. With the emergence of nanotechnology and its application in various industrial domains, the rising interest in the medical field, especially in epidemiology, has skyrocketed. The applications of nanosized carriers have sparked special attention, aiming towards minimizing the overall side effects caused due to drug therapy and avoiding bioavailability. The applications of concepts of nanobiotechnology to both vector control and patient therapy can also be one of the approaches. The current study focuses on the use of hybrid drugs as next-generation antimalarial drugs because they involve fewer drug adverse effects. The paper encompasses the numerous nanosized delivery-based systems that have been found to be effective among higher animal models, especially in treating malarial prophylaxis. This paper delivers a detailed review of diagnostic techniques, various nanotechnology approaches, the application of nanocarriers, and the underlying mechanisms for the management of malaria, thereby providing insights and the direction in which the current trends are imparted from the innovative and technological perspective.

9.
Pharmaceutics ; 16(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543191

RESUMO

Prostate cancer is one of the most life-threatening disorders that occur in males. It has now become the third most common disease all over the world, and emerging cases and spiking mortality rates are becoming more challenging day by day. Several approaches have been used to treat prostate cancer, including surgery, radiation therapy, chemotherapy, etc. These are painful and invasive ways of treatment. Primarily, chemotherapy has been associated with numerous drawbacks restricting its further application. The majority of prostate cancers have the potential to become castration-resistant. Prostate cancer cells exhibit resistance to chemotherapy, resistance to radiation, ADT (androgen-deprivation therapy) resistance, and immune stiffness as a result of activating tumor-promoting signaling pathways and developing resistance to various treatment modalities. Nanomedicines such as liposomes, nanoparticles, branched dendrimers, carbon nanotubes, and quantum dots are promising disease management techniques in this context. Nanomedicines can target the drugs to the target site and enhance the drug's action for a prolonged period. They may also increase the solubility and bioavailability of poorly soluble drugs. This review summarizes the current data on nanomedicines for the prevention and treatment of prostate cancer. Thus, nanomedicine is pioneering in disease management.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37102487

RESUMO

Skin is a defensive barrier that protects the body against sun rays and other harmful environmental elements. Sun rays contain ultraviolet rays, UVA (320-400 nm) and UVB (280-320 nm), which are highly harmful to the skin, leading to photoaging. Nowadays, sunscreen products are being utilized to protect the skin against photodamage. Conventional sunscreens are useful but cannot provide skin protection against UV rays for a longer period of time. Therefore, they need to be applied frequently. Aromatic compounds (ACs)-based sunscreens may filter out the UV rays but give rise to several side effects, like premature aging, stress, atopic dermatitis, keratinocytes (KCs) damage, genetic interruption, and malignant melanoma due to deposition of their toxic metabolites on the skin. The concept of natural medicines has become popular worldwide because of their safety and efficacy. Natural medicines have been proven to possess a wide array of biological properties, including antioxidant, antityrosinase, antielastase, antiwrinkle, antiaging, anti-inflammatory, anticancer, etc., against sun rays-mediated skin damage. The present review article is focused on UV-induced oxidative stress, and pathological and molecular targets with updates on herbal bioactives for the management of skin aging.

11.
Curr Pharm Des ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312443

RESUMO

Curcumin is a potent bioactive compound of Curcuma longa. Curcumin comprises a broad spectrum of biological activities, including hepatoprotective, anticancer, antimicrobial, anti-inflammatory, antitumor, anti-oxidant, etc. However, its low aqueous solubility, rapid excretion, and poor bioavailability restricted its therapeutic uses. To resolve these issues, novel nano-systems have now been developed to increase the bioactivity and bioavailability of curcumin by lowering the particle size, altering the surface, and increasing the efficacy of its encapsulation with various nanocarriers. Nanotechnology-based treatments can broaden the outlook for individuals with critical conditions. This article explores curcumin-based nanoparticulate carrier systems that should be employed to overcome this natural ingredient's inherent limitations. These nanocarriers also provide physical and chemical stability by encapsulating the drug into the core or matrix of the lipids or polymers. Nanotechnologists developed curcumin-encapsulated various nanoparticulate systems, including solid lipidic nanoparticles, polymeric nanoparticles, nano-structured lipid carriers, polymer conjugates, etc., to improve curcumin bioavailability and boost the sustained release of curcumin to target cells.

12.
Med Oncol ; 40(6): 159, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37097307

RESUMO

Colorectal cancers are among the most commonly found cancers over the world. In spite of the recent advancements in diagnosis and prognosis, the management of this metastatic condition remains a challenge. The utility of monoclonal antibodies in the healing of patients with colorectal cancer has opened a new chapter in the quest for newer therapies. The resistance to the standard treatment regimen made it mandatory to search for newer targets. Mutagenic alterations in the gene engaged in cellular differentiation and growth pathway have been the reason for resistance to treatment. The newer therapies target the various proteins and receptors involved in the signal transduction and down streaming pathways leading to cell proliferation. This review presents an insight into the newer targeted therapies for colorectal cancer involving tyrosine kinase blockers, epidermal growth factor receptors, vascular endothelial growth factor, immune checkpoint therapy, and BRAF inhibitors.


Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Antineoplásicos/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Neoplasias Colorretais/patologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Receptores ErbB/genética , Mutação
13.
Curr Pharm Des ; 29(37): 2921-2939, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053352

RESUMO

Resveratrol (RSV) is a polyphenolic phytoalexin, and belongs to the stilbene family. RSV has several therapeutic activities such as cardioprotective, anticancer, and antioxidant. Apart from its therapeutic benefits, its pharmacological uses are limited due to low solubility, poor bioavailability, and short biological halflife. A researcher continuously focuses on overcoming the limitations of RSV through nanotechnology platforms to get the optimum health benefits. In this context, nanocarriers are pioneering to overcome these drawbacks. Nanocarriers possess high drug loading capacity, thermal stability, low production cost, longer shelflife, etc. Fortunately, scientists were proficient in delivering resveratrol-based nanocarriers in the present scenario. Nanocarriers can deliver drugs to the target sites without compromising the bioavailability. Thus, this review highlights how the latest nanocarrier systems overcome the shortcomings of RSV, which will be good for improving therapeutic efficacy and bioavailability. Moreover, recent updates on resveratrol-based novel formulations and their clinical trials have been addressed to manage several health-related problems.


Assuntos
Antioxidantes , Nanotecnologia , Humanos , Resveratrol/farmacologia , Disponibilidade Biológica , Antioxidantes/farmacologia , Composição de Medicamentos
14.
Artigo em Inglês | MEDLINE | ID: mdl-37282649

RESUMO

Oral and injectable drug administration have recently been replaced with transdermal drug delivery (TDD) approaches, which are less intrusive, less likely to be rejected by patients, and easier to administer. There is still room for improvement in the treatment of gout with the use of a TDD system. Gout has become a worldwide epidemic and a severe threat to human beings. Gout treatment can be accomplished in various ways, including orally and intravenously. Several traditional options are still useless, cumbersome, and potentially dangerous. Hence, gout therapeutic options are desperately required for more effective and less toxic drug delivery methods. Anti-gout medications using TDD could substantially influence obese people in the future, even if most trials are still in the animal stages. Thus, this review aimed to provide a concise overview of recent TDD technologies and anti-gout medication delivery methods that improved therapeutic efficacy and bioavailability. Moreover, clinical updates on investigational drugs have been discussed to address the potential findings against gout.

15.
Nanomedicine (Lond) ; 18(2): 145-168, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36938800

RESUMO

Drug-loaded, brain-targeted nanocarriers could be a promising tool in overcoming the challenges associated with Alzheimer's disease therapy. These nanocargoes are enormously flexible to functionalize and facilitate the delivery of drugs to brain cells by bridging the blood-brain barrier and into brain cells. To date, modifications have included nanoparticles (NPs) coating with tunable surfactants/phospholipids, covalently attaching polyethylene glycol chains (PEGylation), and tethering different targeting ligands to cell-penetrating peptides in a manner that facilitates their entry across the BBB and downregulates various pathological hallmarks as well as intra- and extracellular signaling pathways. This review provides a brief update on drug-loaded, multifunctional nanocarriers and the therapeutic intervention of autophagy and stem cells in the management of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Nanopartículas , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Nanomedicina , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas , Células-Tronco , Autofagia
16.
Polymers (Basel) ; 15(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36771843

RESUMO

The goal of current research was to develop a new form of effective drug, curcumin-loaded solid lipid nanoparticles (Cur-SLNs) and test its efficacy in the treatment of lung cancer. Different batches of SLNs were prepared by the emulsification-ultrasonication method. For the optimization of formulation, each batch was evaluated for particle size, polydispersity index (PI), zeta potential (ZP), entrapment efficiency (EE) and drug loading (DL). The formulation components and process parameters largely affected the quality of SLNs. The SLNs obtained with particle size, 114.9 ± 1.36 nm; PI, 0.112 ± 0.005; ZP, -32.3 ± 0.30 mV; EE, 69.74 ± 2.03%, and DL, 0.81 ± 0.04% was designated as an optimized formulation. The formulation was freeze-dried to remove excess water to improve the physical stability. Freeze-dried Cur-SLNs showed 99.32% of drug release and demonstrated a burst effect trailed by sustained release up to 120 h periods. The erythrocyte toxicity study of Cur-SLNs and its components demonstrated moderate hemolytic potential towards red blood cells (RBCs). The cytotoxic potential of the formulation and plain curcumin was estimated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against A549 cell line. After 48 h of incubation, Cur-SLNs demonstrated more cytotoxicity (IC50 = 26.12 ± 1.24 µM) than plain curcumin (IC50 = 35.12 ± 2.33 µM). Moreover, the cellular uptake of curcumin was found to be significantly higher from Cur-SLNs (682.08 ± 6.33 ng/µg) compared to plain curcumin (162.4 ± 4.2 ng/µg). Additionally, the optimized formulation was found to be stable over the period of 90 days of storage. Hence, curcumin-loaded SLNs can be prepared using the proposed cost effective method, and can be utilized as an effective drug delivery system for the treatment of lung cancer, provided in vivo studies warrant a similar outcome.

17.
Struct Chem ; 33(5): 1517-1528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35502321

RESUMO

COVID-19 was caused by a novel coronavirus known as SARS-CoV-2. The COVID-19 disease outbreak has been avowed as a global pandemic by the World Health Organization at the end of March 2020. It leads to the global economic crash, resulting in the starvation of a large population belonging to economically backward countries. Hence, the development of an alternative medicine along with the vaccine is of the utmost importance for the management of COVID-19. Therefore, screening of several herbal leads was performed to explore their potential against SARS-CoV-2. Furthermore, viral main protease was selected as a key enzyme for performing the study. Various computational approaches, including molecular docking simulation, were used in the current study to find potential inhibitors of viral main protease from a library of 150 herbal leads. Toxicity and ADME prediction of selected molecules were also analysed by Osiris molecular property explorer software. Molecular dynamic simulation of the top 10 docked herbal leads was analysed for stability using 100 ns. Taraxerol (-10.17 kcal/mol), diosgenin (10.12 kcal/mol), amyrin (-9.56 kcal/mol), and asiaticoside (-9.54 kcal/mol) were among the top four herbal leads with the highest binding affinity with the main protease enzyme. Thus, taraxerol was found to be an effective drug candidate against the main protease enzyme for the management of COVID-19. Furthermore, its clinical effect and safety profile need to be established through an in vivo model. Supplementary information: The online version contains supplementary material available at 10.1007/s11224-022-01943-x.

18.
Curr Pharm Biotechnol ; 23(2): 235-260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33749558

RESUMO

The world population has suffered as a result of the COVID-19 pandemic. The disease has become life-threatening in a very short time, harming citizens and the economic systems globally. The novel virus SARS-CoV-2 has been known as the causative agent of COVID-19. The SARS-CoV-2 is a single-stranded RNA virus having ~30 kb genomic components, which are 70% identical to SARS-CoV. The main process of the pathophysiology of COVID-19 has been associated with the interaction of a novel coronavirus with host cell receptor, angiotensin-converting enzyme-2 (ACE 2), by fusion. Therapeutic agents having serine protease inhibitors and ACE-2 blockers may be explored for the treatment by inhibiting the viral target such as Mpro, RdRp, PLpro, and helicase. Herbal medicine has a wide array of chemical entities with potential health benefits, including antiviral activity, which may be explored as an alternative treatment for COVID-19. The herbal bioactives like catechins, andrographolide, hesperidin, biorobin, scutellarein, silvestrol, shikonin, tryptanthrin, vitexin quercetin, myricetin, caffeic acid, psoralidin, luteolin, etc. have shown potential inhibitory effect against SARS-CoV-2. Recent research reports indicate that the various plant secondary metabolites have shown potential antiviral activities. The present review article highlights the recent information on the mechanism of actions and applications of herbal medicine in the treatment of COVID-19.


Assuntos
COVID-19 , Plantas Medicinais , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Pandemias , SARS-CoV-2
19.
Curr Pharm Biotechnol ; 23(12): 1483-1496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264085

RESUMO

Burn injuries are extremely debilitating, resulting in high morbidity and mortality rates around the world. The risk of infection escalates in correlation with impairment of skin integrity, creating a barrier to healing and possibly leading to sepsis. With its numerous advantages over traditional treatment methods, nanomaterial-based wound healing has an immense capability of treating and preventing wound infections. Carbon-based nanomaterials (CNMs), owing to their distinctive physicochemical and biological properties, have emerged as promising platforms for biomedical applications. Carbon nanotubes, graphene, fullerenes, and their nanocomposites have demonstrated broad antimicrobial activity against invasive bacteria, fungi, and viruses causing burn wound infection. The specific mechanisms that govern the antimicrobial activity of CNMs must be understood in order to ensure the safe and effective incorporation of these structures into biomaterials. However, it is challenging to decouple individual and synergistic contributions of the physical, chemical, and electrical effects of CNMs on cells. This review reported significant advances in the application of CNMs in burn wound infection and wound healing, with a brief discussion on the interaction between different families of CNMs and microorganisms to assess antimicrobial performance.


Assuntos
Anti-Infecciosos , Queimaduras , Doenças Transmissíveis , Fulerenos , Grafite , Nanotubos de Carbono , Infecção dos Ferimentos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Queimaduras/tratamento farmacológico , Fulerenos/farmacologia , Fulerenos/uso terapêutico , Grafite/química , Humanos , Nanotubos de Carbono/química , Cicatrização , Infecção dos Ferimentos/tratamento farmacológico
20.
Pharm Nanotechnol ; 2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36029070

RESUMO

BACKGROUND: ß-artemether (BAT) and lumefantrine (LFT) combination therapies are well recognized for the treatment of malaria. However, the current conventional formulations have several drawbacks. OBJECTIVE: The study aims to develop novel lipid nanoparticles (LNP) for efficient delivery of BAT and LFT. METHODS: The LNP were prepared by solvent injection method and optimized by the Box-Behnken experimental design to achieve the desired particle size, maximum entrapment efficiency (EE), and percentage drug release. BAT and LFT in rat plasma were estimated by liquid chromatographytandem mass spectrometry (LC-MS/MS). RESULTS: Freeze-dried LNP comprised of 78.74% (w/w) lipid, 15.74% (w/w) surfactant, 3.93% (w/w) co-surfactant and 1.57% mannitol with respect to the total inactive components. Mean particle size and zeta potential were found to be 140.22 ± 1.36 nm and -35.23 mv, respectively. EE was 80.60 ± 3.85% for BAT and 69.64 ± 2.63% for LFT. The optimized formulation exhibited a biphasic release profile in phosphate buffer (pH 7.2). In vivo study revealed an increased bioavailability of BAT and LFT from dual drug loaded LNP compared to the pure drug solution. Moreover, the tissue distribution study confirmed the high uptake of both the drugs in the liver and spleen. CONCLUSION: The study demonstrated the potential use of the developed formulation for oral administration in the treatment of malaria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA