Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genes Dev ; 37(15-16): 760-777, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37704377

RESUMO

The mRNA 3' poly(A) tail plays a critical role in regulating both mRNA translation and turnover. It is bound by the cytoplasmic poly(A) binding protein (PABPC), an evolutionarily conserved protein that can interact with translation factors and mRNA decay machineries to regulate gene expression. Mammalian PABPC1, the prototypical PABPC, is expressed in most tissues and interacts with eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation in specific contexts. In this study, we uncovered a new mammalian PABPC, which we named neural PABP (neuPABP), as it is predominantly expressed in the brain. neuPABP maintains a unique architecture as compared with other PABPCs, containing only two RNA recognition motifs (RRMs) and maintaining a unique N-terminal domain of unknown function. neuPABP expression is activated in neurons as they mature during synaptogenesis, where neuPABP localizes to the soma and postsynaptic densities. neuPABP interacts with the noncoding RNA BC1, as well as mRNAs coding for ribosomal and mitochondrial proteins. However, in contrast to PABPC1, neuPABP does not associate with actively translating mRNAs in the brain. In keeping with this, we show that neuPABP has evolved such that it does not bind eIF4G and as a result fails to support protein synthesis in vitro. Taken together, these results indicate that mammals have expanded their PABPC repertoire in the brain and propose that neuPABP may support the translational repression of select mRNAs.


Assuntos
Fator de Iniciação Eucariótico 4G , Proteínas de Ligação a Poli(A) , Animais , Proteínas de Ligação a Poli(A)/genética , Neurônios , Encéfalo , Mamíferos
2.
EMBO J ; 41(6): e108650, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35156721

RESUMO

Gene expression is tightly regulated at the levels of both mRNA translation and stability. The poly(A)-binding protein (PABP) is thought to play a role in regulating these processes by binding the mRNA 3' poly(A) tail and interacting with both the translation and mRNA deadenylation machineries. In this study, we directly investigate the impact of PABP on translation and stability of endogenous mRNAs in human cells. Remarkably, our transcriptome-wide analysis only detects marginal mRNA translation changes in PABP-depleted cells. In contrast, rapidly depleting PABP alters mRNA abundance and stability, albeit non-uniformly. Otherwise stable transcripts, including those encoding proteins with constitutive functions, are destabilized in PABP-depleted cells. In contrast, many unstable mRNAs, including those encoding proteins with regulatory functions, decay at similar rates in presence or absence of PABP. Moreover, PABP depletion-induced cell death can partially be suppressed by disrupting the mRNA decapping and 5'-3' decay machinery. Finally, we provide evidence that the LSM1-7 complex promotes decay of "stable" mRNAs in PABP-depleted cells. Taken together, these findings suggest that PABP plays an important role in preventing the untimely decay of select mRNA populations.


Assuntos
Perfilação da Expressão Gênica , Morte Celular , Humanos , RNA Mensageiro/genética
3.
J Biol Chem ; 292(50): 20657-20668, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29061851

RESUMO

PD-L1 (programmed death ligand 1) and PD-L2 are cell-surface glycoproteins that interact with programmed death 1 (PD-1) on T cells to attenuate inflammation. PD-1 signaling has attracted intense interest for its role in a pathophysiological context: suppression of anti-tumor immunity. Similarly, vitamin D signaling has been increasingly investigated for its non-classical actions in stimulation of innate immunity and suppression of inflammatory responses. Here, we show that hormonal 1,25-dihydroxyvitamin D (1,25D) is a direct transcriptional inducer of the human genes encoding PD-L1 and PD-L2 through the vitamin D receptor, a ligand-regulated transcription factor. 1,25D stimulated transcription of the gene encoding PD-L1 in epithelial and myeloid cells, whereas the gene encoding the more tissue-restricted PD-L2 was regulated only in myeloid cells. We identified and characterized vitamin D response elements (VDREs) located in both genes and showed that 1,25D treatment induces cell-surface expression of PD-L1 in epithelial and myeloid cells. In co-culture experiments with primary human T cells, epithelial cells pretreated with 1,25D suppressed activation of CD4+ and CD8+ cells and inhibited inflammatory cytokine production in a manner that was abrogated by anti-PD-L1 blocking antibody. Consistent with previous observations of species-specific regulation of immunity by vitamin D, the VDREs are present in primate genes, but neither the VDREs nor the regulation by 1,25D is present in mice. These findings reinforce the physiological role of 1,25D in controlling inflammatory immune responses but may represent a double-edged sword, as they suggest that elevated vitamin D signaling in humans could suppress anti-tumor immunity.


Assuntos
Antígeno B7-H1/agonistas , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Proteína 2 Ligante de Morte Celular Programada 1/agonistas , Regulação para Cima/efeitos dos fármacos , Elemento de Resposta à Vitamina D/efeitos dos fármacos , Vitamina D/análogos & derivados , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Feminino , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Mucosa Nasal/citologia , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Especificidade de Órgãos , Proteína 2 Ligante de Morte Celular Programada 1/genética , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vitamina D/farmacologia
4.
Vaccine ; 36(52): 8028-8038, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30448064

RESUMO

Cell-mediated immunity is an important component of immediate and long-term anti-viral protection. Dendritic cells (DCs) are essential for the induction of cell-mediated immunity by instructing the activation and differentiation of antigen-specific T cell responses. Activated DCs that express co-stimulatory molecules and pro-inflammatory cytokines are necessary to promote the development of type 1 immune responses required for viral control. Here we report that plant-derived virus-like particles (VLPs) bearing influenza hemagglutinins (HA) directly stimulate mouse and human DCs. DCs exposed to H1- and, to a lesser extent, H5-VLPs in vitro rapidly express co-stimulatory molecules and produce pro-inflammatory cytokines including IL-12, IL-6 and TNFα. Furthermore, these VLPs support the activation and differentiation of antigen-specific T cell responses. Mechanistically, H1-VLPs stimulate the activation of kinases typically activated downstream of pattern recognition receptors including AKT, p38, and p42/44 ERK. In vivo, immunization with plant-derived VLPs induce the accumulation of both cDC1s and cDC2 in the draining lymph node and a corresponding increase in T and B cells. VLPs devoid of HA protein activate DCs, suggesting they are intrinsically immunostimulatory. Together, the results demonstrate that these candidate plant-derived VLP vaccines have an inherent and direct stimulatory effect on DCs and can enhance the ability of DCs to promote Type 1 immune responses.


Assuntos
Células Dendríticas/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade Celular , Vacinas contra Influenza/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Plantas/genética , Plantas/imunologia , Células Th1/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem
5.
J Cell Biol ; 209(2): 221-34, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25918224

RESUMO

Chromosome congression requires the stable attachment of microtubules to chromosomes mediated by the kinetochore, a large proteinaceous structure whose mechanism of assembly is unknown. In this paper, we present the finding that a protein called TRAMM (formerly known as TrappC12) plays a role in mitosis. Depletion of TRAMM resulted in noncongressed chromosomes and arrested cells in mitosis. Small amounts of TRAMM associated with chromosomes, and its depletion affected the localization of some kinetochore proteins, the strongest effect being seen for CENP-E. TRAMM interacts with CENP-E, and depletion of TRAMM prevented the recruitment of CENP-E to the kinetochore. TRAMM is phosphorylated early in mitosis and dephosphorylated at the onset of anaphase. Interestingly, this phosphorylation/dephosphorylation cycle correlates with its association/disassociation with CENP-E. Finally, we demonstrate that a phosphomimetic form of TRAMM recruited CENP-E to kinetochores more efficiently than did the nonphosphorylatable mutant. Our study identifies a moonlighting function for TRAMM during mitosis and adds a new component that regulates kinetochore stability and CENP-E recruitment.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Cromossomos Humanos , Cinetocoros/química , Cinetocoros/metabolismo , Mitose/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Western Blotting , Posicionamento Cromossômico , Células HeLa , Humanos , Microtúbulos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fuso Acromático , Técnicas do Sistema de Duplo-Híbrido
6.
Cell Logist ; 2(1): 28-42, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22645708

RESUMO

Saccharomyces cerevisiae transport protein particle (TRAPP) is a family of related multisubunit complexes required for endoplasmic reticulum-to-Golgi transport (TRAPP I), endosome-to-Golgi transport (TRAPP II) or cytosol to vacuole targeting (TRAPP III). To gain insight into the relationship between these complexes, we generated random and targeted mutations in the Trs23p core subunit. Remarkably, at physiological salt concentrations only two peaks (TRAPP I and a high molecular weight peak) are detected in wild-type cells. As the salt was raised, the high molecular weight peak resolved into TRAPP II and III peaks. Deletion of a Saccharomycotina-specific domain of Trs23p resulted in destabilization of TRAPP I but had no effect on TRAPP II or III. This mutation had no observable growth phenotype, normal levels of Ypt1p-directed guanine nucleotide exchange factor activity in vivo and did not display any in vivo nor in vitro blocks in membrane traffic. Biochemical analysis indicated that TRAPP I could be produced from the TRAPP II/III peak in vitro by increasing the salt concentration. Our data suggest that the SMS domain of Trs23p is responsible for the in vitro appearance of TRAPP I in S. cerevisiae. The implications of these findings are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA