Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 25(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33152997

RESUMO

Deep eutectic solvents (DESs) are green solvents developed as an alternative to conventional organic solvents and ionic liquids to extract nitrogen compounds from fuel oil. DESs based on p-toluenesulfonic acid (PTSA) are a new solvent class still under investigation for extraction/separation. This study investigated a new DES formed from a combination of tetrabutylphosphonium bromide (TBPBr) and PTSA at a 1:1 molar ratio. Two sets of ternary liquid-liquid equilibrium experiments were performed with different feed concentrations of nitrogen compounds ranging up to 20 mol% in gasoline and diesel model fuel oils. More than 99% of quinoline was extracted from heptane and pentadecane using the DES, leaving the minutest amount of the contaminant. Selectivity was up to 11,000 for the heptane system and up to 24,000 for the pentadecane system at room temperature. The raffinate phase's proton nuclear magnetic resonance (1H-NMR) spectroscopy and GC analysis identified a significantly small amount of quinoline. The selectivity toward quinoline was significantly high at low solute concentrations. The root-mean-square deviation between experimental data and the non-random two-liquid (NRTL) model was 1.12% and 0.31% with heptane and pentadecane, respectively. The results showed that the TBPBr/PTSADES is considerably efficient in eliminating nitrogen compounds from fuel oil.


Assuntos
Benzenossulfonatos/química , Gasolina , Modelos Químicos , Líquidos Iônicos/química , Solventes/química
2.
ACS Omega ; 6(34): 22317-22332, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34497921

RESUMO

Removal of nitrogen and sulfur compounds from diesel fuel is essential to comply with the increasing stringent regulations. The extraction capability of two deep eutectic solvents, namely, tetrabutylphosphoniumbromide/ethylene glycol, TBPBr/EG, with molar ratio 1:2, and tetrabutylammoniumbromide/ethylene glycol, TBABr/EG, with molar ratio 1:2, in simultaneously extracting basic nitrogen, nonbasic nitrogen, and sulfur compounds represented by pyridine, indoline, and dibenzothiophene (DBT) from n-hexadecane, was investigated. Two pseudo-ternary phase diagrams of (TBPBr/EG + (pyridine + indoline + DBT) + n-hexadecane) and (TBABr/EG + (pyridine + indoline + DBT) + n-hexadecane) were predicted via a conductor-like screening model for real solvents (COSMO-RS) and experimentally validated at 298.15 K and 1 atm. Both solvents showed zero cross-contamination, indicating the suitability of all solvents as extraction solvents. The tie lines obtained for both COSMO-RS and experiments were in agreement and had root-mean-square deviation (RMSD) values of less than 5% for both systems. Selectivity and distribution ratio calculated indicates the suitability of both solvents in extracting sulfur and nitrogen compounds from hexadecane. Two new parameters, namely, extraction efficiency, α, and extraction affinity, ß, were introduced to ease the performance comparison of both solvents. TBPBr/EG shows a slightly better performance than TBABr/EG. Other than that, the presence of multiple solutes shows low effects on the performance of these solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA