Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Diabet Med ; 40(12): e15220, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669696

RESUMO

We previously developed, synthesized and tested light-activated sulfonylureas for optical control of KATP channels and pancreatic beta cell activity in vitro and in vivo. Such technology relies on installation of azobenzene photoswitches onto the sulfonylurea backbone, affording light-dependent isomerization, alteration in ligand affinity for SUR1 and hence KATP channel conductance. Inspired by molecular dynamics simulations and to further improve photoswitching characteristics, we set out to develop a novel push-pull closed ring azobenzene unit, before installing this on the sulfonylurea glimepiride as a small molecule recipient. Three fine-tuned, light-activated sulfonylureas were synthesized, encompassing azetidine, pyrrolidine and piperidine closed rings. Azetidine-, pyrrolidine- and piperidine-based sulfonylureas all increased beta cell Ca2+ -spiking activity upon continuous blue light illumination, similarly to first generation JB253. Notably, the pyrrolidine-based sulfonylurea showed superior switch OFF performance to JB253. As such, third generation sulfonylureas afford more precise optical control over primary pancreatic beta cells, and showcase the potential of pyrrolidine-azobenzenes as chemical photoswitches across drug classes.


Assuntos
Azetidinas , Células Secretoras de Insulina , Humanos , Compostos de Sulfonilureia/uso terapêutico , Trifosfato de Adenosina , Piperidinas , Pirrolidinas
2.
Am J Physiol Endocrinol Metab ; 317(6): E973-E983, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550181

RESUMO

Extracellular matrix hyaluronan is increased in skeletal muscle of high-fat-fed insulin-resistant mice, and reduction of hyaluronan by PEGPH20 hyaluronidase ameliorates diet-induced insulin resistance (IR). CD44, the main hyaluronan receptor, is positively correlated with type 2 diabetes. This study determines the role of CD44 in skeletal muscle IR. Global CD44-deficient (cd44-/-) mice and wild-type littermates (cd44+/+) were fed a chow diet or 60% high-fat diet for 16 wk. High-fat-fed cd44-/- mice were also treated with PEGPH20 to evaluate its CD44-dependent action. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp (ICv). High-fat feeding increased muscle CD44 protein expression. In the absence of differences in body weight and composition, despite lower clamp insulin during ICv, the cd44-/- mice had sustained glucose infusion rate (GIR) regardless of diet. High-fat diet-induced muscle IR as evidenced by decreased muscle glucose uptake (Rg) was exhibited in cd44+/+ mice but absent in cd44-/- mice. Moreover, gastrocnemius Rg remained unchanged between genotypes on chow diet but was increased in high-fat-fed cd44-/- compared with cd44+/+ when normalized to clamp insulin concentrations. Ameliorated muscle IR in high-fat-fed cd44-/- mice was associated with increased vascularization. In contrast to previously observed increases in wild-type mice, PEGPH20 treatment in high-fat-fed cd44-/- mice did not change GIR or muscle Rg during ICv, suggesting a CD44-dependent action. In conclusion, genetic CD44 deletion improves muscle IR, and the beneficial effects of PEGPH20 are CD44-dependent. These results suggest a critical role of CD44 in promoting hyaluronan-mediated muscle IR, therefore representing a potential therapeutic target for diabetes.


Assuntos
Dieta Hiperlipídica , Glucose/metabolismo , Receptores de Hialuronatos/genética , Ácido Hialurônico/metabolismo , Resistência à Insulina/genética , Músculo Esquelético/metabolismo , Animais , Peso Corporal , Técnica Clamp de Glucose , Receptores de Hialuronatos/metabolismo , Hialuronoglucosaminidase/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos
3.
Diabetes Metab Res Rev ; 35(3): e3106, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30499633

RESUMO

BACKGROUND: Therapeutic benefits of peptide-based drugs is limited by rapid renal elimination. METHODS: Therefore, to prolong the biological action profile of the recently characterized triple-acting hybrid peptide, exendin-4/gastrin/xenin-8-Gln, a fatty acid (C-16) has been covalently attached, creating exendin-4(Lys27 PAL)/gastrin/xenin-8-Gln. Exendin-4/gastrin and liraglutide/gastrin/xenin-8-Gln were also synthesized as direct comparator peptides. RESULTS: All hybrid peptides evoked significant concentration-dependent increases of insulin secretion from isolated murine islets and BRIN-BD11 cells. Following administration of peptides with glucose to mice, all hybrids significantly reduced the overall glycaemic excursion and increased insulin concentrations. In contrast to other treatments, exendin-4(Lys27 PAL)/gastrin/xenin-8-Gln displayed impressive antihyperglycaemic actions even 12 hours after administration, highlighting protracted duration of effects. Exendin-4/gastrin/xenin-8-Gln, exendin-4/gastrin, and exendin-4(Lys27 PAL)/gastrin/xenin-8-Gln were then progressed to a 31-day twice-daily treatment regimen in obese-diabetic ob/ob mice. All treatments decreased nonfasting glucose and HbA1c concentrations, as well as enhancing circulating and pancreatic insulin levels. Exendin-4/gastrin and exendin-4/gastrin/xenin-8-Gln also decreased food intake. Glucose tolerance was improved by all treatments, but only exendin-4(Lys27 PAL)/gastrin/xenin-8-Gln augmented glucose-induced insulin secretion. Interestingly, treatment regimens that included a xenin component induced clear advantages on the metabolic response to glucose-dependent insulinotropic polypeptide (GIP) and the glucose-lowering actions of insulin. CONCLUSION: This study emphasizes the therapeutic promise of long-acting, multi-targeting hybrid gut peptides for type 2 diabetes.


Assuntos
Exenatida/química , Gastrinas/química , Peptídeo 1 Semelhante ao Glucagon/química , Obesidade/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Magreza , Acilação , Animais , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Obesidade/tratamento farmacológico , Fragmentos de Peptídeos/química
4.
Diabetologia ; 60(3): 541-552, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28004148

RESUMO

AIMS/HYPOTHESIS: Glucose-dependent insulinotropic polypeptide (GIP) and xenin, regulatory gut hormones secreted from enteroendocrine K cells, exert important effects on metabolism. In addition, xenin potentiates the biological actions of GIP. The present study assessed the actions and therapeutic utility of a (DAla2)GIP/xenin-8-Gln hybrid peptide, in comparison with the parent peptides (DAla2)GIP and xenin-8-Gln. METHODS: Following confirmation of enzymatic stability, insulin secretory activity of (DAla2)GIP/xenin-8-Gln was assessed in BRIN-BD11 beta cells. Acute and persistent glucose-lowering and insulin-releasing effects were then examined in vivo. Finally, the metabolic benefits of twice daily injection of (DAla2)GIP/xenin-8-Gln was determined in high-fat-fed mice. RESULTS: All peptides significantly (p < 0.05 to p < 0.001) enhanced in vitro insulin secretion from pancreatic clonal BRIN-BD11 cells, with xenin (and particularly GIP)-related signalling pathways, being important for this action. Administration of (DAla2)GIP or (DAla2)GIP/xenin-8-Gln in combination with glucose significantly (p < 0.05) lowered blood glucose and increased plasma insulin in mice, with a protracted response of up to 4 h. All treatments elicited appetite-suppressive effects (p < 0.05), particularly (DAla2)GIP/xenin-8-Gln and xenin-8-Gln at elevated doses of 250 nmol/kg. Twice-daily administration of (DAla2)GIP/xenin-8-Gln or (DAla2)GIP for 21 days to high-fat-fed mice returned circulating blood glucose to lean control levels. In addition, (DAla2)GIP/xenin-8-Gln treatment significantly (p < 0.05) reduced glycaemic levels during a 24 h glucose profile assessment. Neither of the treatment regimens had an effect on body weight, energy intake or circulating insulin concentrations. However, insulin sensitivity was significantly (p < 0.001) improved by both treatments. Interestingly, GIP-mediated glucose-lowering (p < 0.05) and insulin-releasing (p < 0.05 to p < 0.01) effects were substantially improved by (DAla2)GIP and (DAla2)GIP/xenin-8-Gln treatment. Pancreatic islet and beta cell area (p < 0.001), as well as pancreatic insulin content (p < 0.05), were augmented in (DAla2)GIP/xenin-8-Gln-treated mice, related to enhanced proliferation and decreased apoptosis of beta cells, whereas (DAla2)GIP evoked increases (p < 0.05 to p < 0.01) in islet number. CONCLUSIONS/INTERPRETATION: These studies highlight the clear potential of GIP/xenin hybrids for the treatment of type 2 diabetes.


Assuntos
Polipeptídeo Inibidor Gástrico/uso terapêutico , Neurotensina/uso terapêutico , Peptídeos/uso terapêutico , Animais , Glicemia/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Dieta Hiperlipídica , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Imuno-Histoquímica , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Fragmentos de Peptídeos/uso terapêutico
5.
Biochim Biophys Acta ; 1860(4): 757-64, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26802310

RESUMO

BACKGROUND: Xenin-25 is a K-cell derived gut peptide with insulin-releasing activity which is rapidly degraded following release into the circulation. We hypothesized that substitution of all naturally-occurring Lys and Arg residues with Gln would lead to prolonged enzyme resistance and enhanced biological efficacy. METHODS: Peptide stability was assessed using murine plasma, in vitro insulin-releasing actions evaluated in BRIN-BD11 cells and acute glucose-lowering and insulin-releasing actions examined in high fat fed mice. For sub-chronic studies, a range of metabolic parameters and pancreatic histology were assessed in high fat fed mice which had received saline vehicle or xenin-25(gln) twice-daily for 21 days. RESULTS: In contrast to native xenin-25, xenin-25(gln) was resistant to plasma-mediated degradation and significantly stimulated insulin secretion in BRIN-BD11 cells. Acute administration of xenin-25(gln) in high fat fed mice significantly reduced blood glucose and increased plasma insulin concentrations. Twice-daily administration of xenin-25(gln) in high fat fed mice did not affect food intake, body weight or circulating insulin concentrations but significantly decreased blood glucose from day 9 onwards. Furthermore, glucose tolerance, glucose-mediated insulin secretion, insulin sensitivity and GIP-stimulated insulin-release were significantly enhanced in xenin-25(gln)-treated mice. Pancreatic immunohistochemistry revealed decreased alpha cell area with increased beta cell area and beta-to-alpha cell ratio in xenin-25(gln)-treated mice. In addition, xenin-25(gln) exerted similar beneficial actions in ob/ob mice as demonstrated by reduced blood glucose, superior glycaemic response and glucose-mediated insulin release. CONCLUSIONS: Xenin-25(gln) is resistant to plasma-mediated degradation and exerts sustained and beneficial metabolic actions in high fat fed and ob/ob mice. GENERAL SIGNIFICANCE: Glutamine (gln)-modified analogues of xenin may represent an attractive therapeutic approach for type 2 diabetes.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Insulina/sangue , Neurotensina/farmacologia , Neurotensina/farmacocinética , Animais , Linhagem Celular , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Diabetes Mellitus Tipo 2/sangue , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Camundongos , Neurotensina/química
6.
Mol Metab ; 86: 101970, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908792

RESUMO

OBJECTIVE: Obesity increases deposition of extracellular matrix (ECM) components of cardiac tissue. Since obesity aggregates with insulin resistance and heart disease, it is imperative to determine whether the increased ECM deposition contributes to this disease cluster. The hypotheses tested in this study were that in cardiac tissue of obese mice i) increased deposition of ECM components (collagens and hyaluronan) contributes to cardiac insulin resistance and that a reduction in these components improves cardiac insulin action and ii) reducing excess collagens and hyaluronan mitigates obesity-associated cardiac dysfunction. METHODS: Genetic and pharmacological approaches that manipulated collagen and hyaluronan contents were employed in obese C57BL/6 mice fed a high fat (HF) diet. Cardiac insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp and cardiac function was measured by pressure-volume loop analysis in vivo. RESULTS: We demonstrated a tight association between increased ECM deposition with cardiac insulin resistance. Increased collagen deposition by genetic deletion of matrix metalloproteinase 9 (MMP9) exacerbated cardiac insulin resistance and pirfenidone, a clinically available anti-fibrotic medication which inhibits collagen expression, improved cardiac insulin resistance in obese mice. Furthermore, decreased hyaluronan deposition by treatment with PEGylated human recombinant hyaluronidase PH20 (PEGPH20) improved cardiac insulin resistance in obese mice. These relationships corresponded to functional changes in the heart. Both PEGPH20 and pirfenidone treatment in obese mice ameliorated HF diet-induced abnormal myocardial remodelling. CONCLUSION: Our results provide important new insights into the role of ECM deposition in the pathogenesis of cardiac insulin resistance and associated dysfunction in obesity of distinct mouse models. These findings support the novel therapeutic potential of targeting early cardiac ECM abnormalities in the prevention and treatment of obesity-related cardiovascular complications.

7.
Diabetes ; 72(2): 275-289, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445949

RESUMO

GC-globulin (GC), or vitamin D-binding protein, is a multifunctional protein involved in the transport of circulating vitamin 25(OH)D and fatty acids, as well as actin scavenging. In the pancreatic islets, the gene encoding GC, GC/Gc, is highly localized to glucagon-secreting α-cells. Despite this, the role of GC in α-cell function is poorly understood. We previously showed that GC is essential for α-cell morphology, electrical activity, and glucagon secretion. We now show that loss of GC exacerbates α-cell failure during metabolic stress. High-fat diet-fed GC-/- mice have basal hyperglucagonemia, which is associated with decreased α-cell size, impaired glucagon secretion and Ca2+ fluxes, and changes in glucose-dependent F-actin remodelling. Impairments in glucagon secretion can be rescued using exogenous GC to replenish α-cell GC levels, increase glucagon granule area, and restore the F-actin cytoskeleton. Lastly, GC levels decrease in α-cells of donors with type 2 diabetes, which is associated with changes in α-cell mass, morphology, and glucagon expression. Together, these data demonstrate an important role for GC in α-cell adaptation to metabolic stress.


Assuntos
Diabetes Mellitus Tipo 2 , Globulinas , Animais , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Globulinas/metabolismo , Glucagon/metabolismo , Estresse Fisiológico , Proteína de Ligação a Vitamina D/genética , Proteína de Ligação a Vitamina D/metabolismo
8.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014154

RESUMO

Increased deposition of extracellular matrix (ECM) components such as collagens and hyaluronan contributes to the pathogenesis of obesity-associated insulin resistance in muscle, liver, and adipose tissue. Despite the significance of the heart in cardiovascular and metabolic diseases, maladaptive ECM remodelling in obesity-associated cardiac insulin resistance and cardiac dysfunction has not been studied. Using genetic and pharmacological approaches in mice fed a high fat (HF) diet, we demonstrated a tight association between increased ECM deposition with cardiac insulin resistance. Increased collagen deposition by genetic deletion of matrix metalloproteinase 9 (MMP9) exacerbated cardiac insulin resistance and decreased hyaluronan deposition by treatment with PEGylated human recombinant hyaluronidase PH20 (PEGPH20) improved cardiac insulin resistance in obese mice. These relationships corresponded to functional changes in the heart. PEGPH20 treatment in obese mice ameliorated HF diet-induced abnormal myocardial remodelling. In addition to hyaluronan, increased collagen deposition is a characteristic of the obese mouse heart. We further demonstrated that pirfenidone, a clinically available anti-fibrotic medication which inhibits collagen expression, improved cardiac insulin resistance and cardiac function in obese mice. Our results provide important new insights into the role of ECM remodelling in the pathogenesis of cardiac insulin resistance and associated dysfunction in obesity of distinct mouse models. These findings support the novel therapeutic potential of targeting early cardiac ECM abnormalities in the prevention and treatment of obesity-related cardiovascular complications.

9.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212283

RESUMO

Central glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) signaling is critical in GIP-based therapeutics' ability to lower body weight, but pathways leveraged by GIPR pharmacology in the brain remain incompletely understood. We explored the role of Gipr neurons in the hypothalamus and dorsal vagal complex (DVC) - brain regions critical to the control of energy balance. Hypothalamic Gipr expression was not necessary for the synergistic effect of GIPR/GLP-1R coagonism on body weight. While chemogenetic stimulation of both hypothalamic and DVC Gipr neurons suppressed food intake, activation of DVC Gipr neurons reduced ambulatory activity and induced conditioned taste avoidance, while there was no effect of a short-acting GIPR agonist (GIPRA). Within the DVC, Gipr neurons of the nucleus tractus solitarius (NTS), but not the area postrema (AP), projected to distal brain regions and were transcriptomically distinct. Peripherally dosed fluorescent GIPRAs revealed that access was restricted to circumventricular organs in the CNS. These data demonstrate that Gipr neurons in the hypothalamus, AP, and NTS differ in their connectivity, transcriptomic profile, peripheral accessibility, and appetite-controlling mechanisms. These results highlight the heterogeneity of the central GIPR signaling axis and suggest that studies into the effects of GIP pharmacology on feeding behavior should consider the interplay of multiple regulatory pathways.


Assuntos
Hipotálamo , Receptores dos Hormônios Gastrointestinais , Peso Corporal , Tronco Encefálico/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Comportamento Alimentar , Animais
10.
Trends Endocrinol Metab ; 33(5): 318-332, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35249813

RESUMO

CD44, a cell-surface glycoprotein, has long been studied as a cancer molecule due to its essential role in physiological activities in normal cells and pathological activities in cancer cells, such as cell proliferation, adhesion, and migration; angiogenesis; inflammation; and cytoskeleton rearrangement. Yet, recent evidence suggests a role of CD44 in metabolism, especially insulin resistance in obesity and diabetes. In line with the current concept of fibroinflammation in obesity and insulin resistance, CD44 as the main receptor of the extracellular matrix component, hyaluronan (HA), has been shown to regulate diet-induced insulin resistance in muscle and other insulin-sensitive tissues. In this review, we integrate current evidence for a role of CD44 in regulating glucose and lipid homeostasis and speculate about its involvement in the pathogenesis of chronic metabolic diseases, including obesity and diabetes. We summarize the current development of CD44-targeted therapies and discuss its potential for the use in treating metabolic diseases.


Assuntos
Resistência à Insulina , Glucose , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Insulina , Obesidade
11.
Mol Metab ; 49: 101197, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33647469

RESUMO

OBJECTIVE: Increased deposition of the extracellular matrix (ECM) in adipose tissue (AT) during obesity contributes to insulin resistance. The integrin receptors transmit changes in the extracellular environment causing corresponding intracellular adaptations. Integrin-linked kinase (ILK), an adaptor protein, is a central hub for intracellular signaling of integrins. This study determined the role of ILK in adipose function and insulin resistance. METHODS: The pathogenic role of ILK in obesity and insulin resistance was studied in human adipose tissue and adipocyte-specific ILK-deficient mice (ILKlox/loxAdCre). ILKlox/loxAdCre mice together with wild-type littermates (ILKlox/lox) were fed a chow diet or 60% high-fat (HF) diet for 16 weeks. In vivo insulin sensitivity was determined by hyperinsulinemic-euglycemic clamps. RESULTS: AT ILK expression was increased by HF diet feeding in mice and increased in visceral fat of morbidly obese humans. The HF-fed ILKlox/loxAdCre mice displayed reduced fat mass and improved glucose tolerance relative to the HF-fed ILKlox/lox mice. During a hyperinsulinemic-euglycemic clamp, the HF-fed ILKlox/loxAdCre mice exhibited partially improved insulin resistance in AT. Lipolysis was suppressed to a greater extent by insulin and glucose uptake in brown AT (BAT) increased. Increased inhibition of lipolysis may have been attributed to increased vascularization in white AT, while increased glucose uptake in BAT was associated with increased Akt phosphorylation and P38/JNK dephosphorylation. Notably, AT insulin sensitivity in lean mice was not affected by ILK deletion. Moreover, reduced fat mass in the HF-fed ILKlox/loxAdCre mice may have been attributed to decreased free fatty acid uptake into adipocytes via the downregulation of CD36 gene expression. Consistent with the results in the mice, knockdown and knockout of ILK in 3T3-L1 cells decreased lipid accumulation and CD36 gene expression during adipogenesis. CONCLUSIONS: These data show that adipocyte ILK is important for regulating HF diet-mediated insulin resistance in AT in a manner consistent with AT function.


Assuntos
Adipócitos/metabolismo , Resistência à Insulina/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Células 3T3-L1 , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica , Matriz Extracelular/metabolismo , Glucose/metabolismo , Técnica Clamp de Glucose , Insulina/metabolismo , Gordura Intra-Abdominal/metabolismo , Lipólise , Masculino , Camundongos , Obesidade Mórbida/metabolismo , Transdução de Sinais
12.
Clin Med Insights Endocrinol Diabetes ; 13: 1179551420905844, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32110131

RESUMO

The ever-increasing prevalence of obesity and Type 2 diabetes has necessitated the development of newer and more effective approaches for achieving efficient glycemic control and weight loss. Conventional treatment methods often result in weight gain, further deteriorating the already impaired metabolic control in people with obesity/Type 2 diabetes. Alleviation of obesity and diabetes achieved after bariatric surgeries highlight the therapeutic importance of gut-brain axis and entails development of more patient-friendly approaches replicating the positive metabolic effects of bariatric surgery. Given the potential involvement of several gut hormones in the success of bariatric surgery, the therapeutic importance of synergistic interaction between these hormones for improved metabolism cannot be ignored. Many unimolecular multiagonist peptides are in preclinical and clinical trials as they maximize the combinatorial metabolic efficacy by concurrent activation of multiple gut hormone receptors. This review summarizes the ongoing developments of multiagonist peptides as novel therapeutic approaches against obesity-diabetes.

13.
Cell Rep ; 31(11): 107761, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32553153

RESUMO

Vitamin-D-binding protein (DBP) or group-specific component of serum (GC-globulin) carries vitamin D metabolites from the circulation to target tissues. DBP is highly localized to the liver and pancreatic α cells. Although DBP serum levels, gene polymorphisms, and autoantigens have all been associated with diabetes risk, the underlying mechanisms remain unknown. Here, we show that DBP regulates α cell morphology, α cell function, and glucagon secretion. Deletion of DBP leads to smaller and hyperplastic α cells, altered Na+ channel conductance, impaired α cell activation by low glucose, and reduced rates of glucagon secretion both in vivo and in vitro. Mechanistically, this involves reversible changes in islet microfilament abundance and density, as well as changes in glucagon granule distribution. Defects are also seen in ß cell and δ cell function. Immunostaining of human pancreata reveals generalized loss of DBP expression as a feature of late-onset and long-standing, but not early-onset, type 1 diabetes. Thus, DBP regulates α cell phenotype, with implications for diabetes pathogenesis.


Assuntos
Comunicação Celular/fisiologia , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Proteína de Ligação a Vitamina D/metabolismo , Vitamina D/metabolismo , Animais , Transporte Biológico/fisiologia , Secreções Corporais/metabolismo , Humanos , Camundongos Knockout , Fenótipo
14.
Sci Rep ; 9(1): 11244, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375720

RESUMO

Cystic fibrosis-related diabetes (CFRD) worsens CF lung disease leading to early mortality. Loss of beta cell area, even without overt diabetes or pancreatitis is consistently observed. We investigated whether short-term CFTR inhibition was sufficient to impact islet morphology and function in otherwise healthy mice. CFTR was inhibited in C57BL/6 mice via 8-day intraperitoneal injection of CFTRinh172. Animals had a 7-day washout period before measures of hormone concentration or islet function were performed. Short-term CFTR inhibition increased blood glucose concentrations over the course of the study. However, glucose tolerance remained normal without insulin resistance. CFTR inhibition caused marked reductions in islet size and in beta cell and non-beta cell area within the islet, which resulted from loss of islet cell size rather than islet cell number. Significant reductions in plasma insulin concentrations and pancreatic insulin content were also observed in CFTR-inhibited animals. Temporary CFTR inhibition had little long-term impact on glucose-stimulated, or GLP-1 potentiated insulin secretion. CFTR inhibition has a rapid impact on islet area and insulin concentrations. However, islet cell number is maintained and insulin secretion is unaffected suggesting that early administration of therapies aimed at sustaining beta cell mass may be useful in slowing the onset of CFRD.


Assuntos
Benzoatos/administração & dosagem , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/complicações , Diabetes Mellitus/patologia , Células Secretoras de Insulina/patologia , Tiazolidinas/administração & dosagem , Animais , Fibrose Cística/induzido quimicamente , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Diabetes Mellitus/sangue , Diabetes Mellitus/etiologia , Modelos Animais de Doenças , Humanos , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos
15.
Peptides ; 100: 202-211, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29412820

RESUMO

Combined modulation of peptide hormone receptors including, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and xenin, have established benefits for the treatment of diabetes. The present study has assessed the biological actions and therapeutic efficacy of a novel exendin-4/xenin-8-Gln hybrid peptide, both alone and in combination with the GIP receptor agonist (DAla2)GIP. Exendin-4/xenin-8-Gln was enzymatically stable and exhibited enhanced insulin secretory actions when compared to its parent peptides. Exendin-4/xenin-8-Gln also possessed ability to potentiate the in vitro actions of GIP. Acute administration of exendin-4/xenin-8-Gln in mice induced appetite suppressive effects, as well as significant and protracted glucose-lowering and insulin secretory actions. Twice daily administration of exendin-4/xenin-8-Gln, alone or in combination with (DAla2)GIP, for 21-days significantly reduced non-fasting glucose and increased circulating insulin levels in high fat fed mice. In addition, all exendin-4/xenin-8-Gln treated mice displayed improved glucose tolerance, insulin sensitivity and metabolic responses to GIP. Combination therapy with (DAla2)GIP did not result in any obvious further benefits. Metabolic improvements in all treatment groups were accompanied by reduced pancreatic beta-cell area and insulin content, suggesting reduced insulin demand. Interestingly, body weight, food intake, circulating glucagon, metabolic rate and amylase activity were unaltered by the treatment regimens. However, all treatment groups, barring (DAla2)GIP alone, exhibited marked reductions in total- and LDL-cholesterol. Furthermore, exendin-4 therapy also reduced circulating triacylglycerol. This study highlights the positive antidiabetic effects of exendin-4/xenin-8-Gln, and suggests that combined modulation of GLP-1 and xenin related signalling pathways represents an exciting treatment option for type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Hipoglicemiantes/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Combinação de Medicamentos , Exenatida/administração & dosagem , Exenatida/química , Polipeptídeo Inibidor Gástrico/química , Glucagon/química , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/química , Glucose/metabolismo , Humanos , Hipoglicemiantes/química , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Neurotensina/administração & dosagem , Neurotensina/química
16.
Eur J Pharmacol ; 834: 126-135, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30025814

RESUMO

Enteroendocrine derived hormones such as glucagon-like-peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), gastrin and xenin are known to exert complementary beneficial metabolic effects in diabetes. This study has assessed the biological activity and therapeutic utility of a novel GLP-1/gastrin/xenin hybrid peptide, namely exendin-4/gastrin/xenin-8-Gln hybrid, both alone and in combination with the stable GIP mimetic, (DAla2)GIP. Exendin-4/gastrin/xenin-8-Gln increased in vitro insulin secretion to a similar or superior extent, as the parent peptides. Insulinotropic effects were mainly linked to modulation of GLP-1 and neurotensin receptors. Exendin-4/gastrin/xenin-8-Gln also augmented the insulinotropic actions of (DAla2)GIP. Acute administration of exendin-4/gastrin/xenin-8-Gln in mice induced significant appetite suppressive, glucose lowering and insulin secretory effects, with a duration of biological action beyond 8 h. Twice daily administration of exendin-4, exendin-4/gastrin/xenin-8-Gln, either alone or in combination with (DAla2)GIP, reduced circulating glucose, increased plasma insulin as well as improving glucose tolerance, insulin sensitivity and metabolic response to GIP in high fat fed mice. Body weight, food intake, circulating glucagon and amylase activity were unaltered. All hybrid peptide treated high fat mice exhibited marked reductions in LDL-cholesterol and body fat mass. Energy expenditure and locomotor activity were increased in mice treated with exendin-4/gastrin/xenin-8-Gln in combination with (DAla2)GIP. Interestingly, exendin-4 and exendin-4/gastrin/xenin-8-Gln treatment, but not exendin-4/gastrin/xenin-8-Gln in combination with (DAla2)GIP, reduced pancreatic islet and beta-cell area when compared to high fat controls. These studies confirm that unimolecular multi-agonist peptide hormones exert beneficial metabolic effects in diabetes, highlighting their potential as novel treatment strategies.


Assuntos
Exenatida/química , Gastrinas/química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Fragmentos de Peptídeos/química , Amilases/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ingestão de Alimentos/efeitos dos fármacos , Jejum/sangue , Glucagon/sangue , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Resistência à Insulina , Lipídeos/sangue , Masculino , Camundongos , Pancrelipase/efeitos dos fármacos , Pancrelipase/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
PLoS One ; 11(3): e0152818, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27032106

RESUMO

Xenin is a peptide that is co-secreted with the incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), from intestinal K-cells in response to feeding. Studies demonstrate that xenin has appetite suppressive effects and modulates glucose-induced insulin secretion. The present study was undertaken to determine the bioactivity and antidiabetic properties of two C-terminal fragment xenin peptides, namely xenin 18-25 and xenin 18-25 Gln. In BRIN-BD11 cells, both xenin fragment peptides concentration-dependently stimulated insulin secretion, with similar efficacy as the parent peptide. Neither fragment peptide had any effect on acute feeding behaviour at elevated doses of 500 nmol/kg bw. When administered together with glucose to normal mice at 25 nmol/kg bw, the overall insulin secretory effect was significantly enhanced in both xenin 18-25 and xenin 18-25 Gln treated mice, with better moderation of blood glucose levels. Twice daily administration of xenin 18-25 or xenin 18-25 Gln for 21 days in high fat fed mice did not affect energy intake, body weight, circulating blood glucose or body fat stores. However, circulating plasma insulin concentrations had a tendency to be elevated, particularly in xenin 18-25 Gln mice. Both treatment regimens significantly improved insulin sensitivity by the end of the treatment period. In addition, sustained treatment with xenin 18-25 Gln significantly reduced the overall glycaemic excursion and augmented the insulinotropic response to an exogenous glucose challenge on day 21. In harmony with this, GIP-mediated glucose-lowering and insulin-releasing effects were substantially improved by twice daily xenin 18-25 Gln treatment. Overall, these data provide evidence that C-terminal octapeptide fragments of xenin, such as xenin 18-25 Gln, have potential therapeutic utility for type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hormônios Gastrointestinais/uso terapêutico , Hipoglicemiantes/uso terapêutico , Neurotensina/uso terapêutico , Sequência de Aminoácidos , Animais , Glicemia/análise , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/sangue , Dieta Hiperlipídica , Ingestão de Energia/efeitos dos fármacos , Hormônios Gastrointestinais/química , Teste de Tolerância a Glucose , Hipoglicemiantes/química , Insulina/sangue , Resistência à Insulina , Masculino , Camundongos , Dados de Sequência Molecular , Neurotensina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA