Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 16(25): 5854-5860, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32296796

RESUMO

Here we report a new class of bio-inspired solid-liquid adhesive, obtained by simple mechanical dispersion of PVDF (polyvinylidene fluoride) (solid spheres) into PDMS (polydimethylsiloxane) (liquid). The adhesive behavior arises from strong solid-liquid interactions. This is a chemical reaction free adhesive (no curing time) that can be repeatedly used and is capable of instantaneously joining a large number of diverse materials (metals, ceramic, and polymer) in air and underwater. The current work is a significant advance in the development of amphibious multifunctional adhesives and presents potential applications in a range of sealing applications, including medical ones.

2.
Angew Chem Int Ed Engl ; 59(32): 13468-13472, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32315516

RESUMO

The one-step synthesis and characterization of a new and robust titanium-based metal-organic framework, ACM-1, is reported. In this structure, which is based on infinite Ti-O chains and 4,4',4'',4'''-(pyrene-1,3,6,8-tetrayl) tetrabenzoic acid as a photosensitizer ligand, the combination of highly mobile photogenerated electrons and a strong hole localization at the organic linker results in large charge-separation lifetimes. The suitable energies for band gap and conduction band minimum (CBM) offer great potential for a wide range of photocatalytic reactions, from hydrogen evolution to the selective oxidation of organic substrates.

3.
Langmuir ; 30(8): 1977-84, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24494714

RESUMO

The temperature dependence of dielectric processes in humid titanate nanowires was investigated via broadband dielectric spectroscopy under quasi-isosteric conditions in the temperature range of 150-350 K. It was found that the dynamic parameters obtained from low-temperature measurements cannot describe the dielectric behavior of the system above 273 K, implying changes in the dynamics of the corresponding dielectric processes. The calculated activation energies and pre-exponential factors counterintuitively increase linearly with the amount of adsorbed water, and a compensation effect was also found to apply to all contributions in the TiONW spectra.

4.
Materials (Basel) ; 17(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473501

RESUMO

In this study, a chemical precipitation approach was adopted to produce a photocatalyst based on bismuth tungstate Bi2WO6 for enhanced and environmentally friendly organic pollutant degradation. Various tools such as X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), optical spectroscopy and X-ray photoelectron spectroscopy, were employed to assess the structural and morphological properties. Hence, the XRD profiles showed a well crystallized Bi2WO6 orthorhombic phase. The photocatalytic performance of the resulting photocatalyst was assessed by the decomposition of Rhodamine B (RhB) and methyl orange (MO) with a decomposition efficiency of 97 and 92%, along with the highest chemical oxygen demand of 82 and 79% during 120 min of illumination, respectively. The principal novelty of the present work is to focus on the changes in the crystalline structure, the morphology, and the optical and the photoelectrochemical characteristics of the Bi2WO6, by tuning the annealing temperature of the designed photocatalyst. Such physicochemical property changes in the as-prepared photocatalyst will affect in turn its photocatalytic activity toward the organic pollutant decomposition. The photocatalytic mechanism was elaborated based on electrochemical impedance spectroscopy, photocurrent analysis, photoluminescence spectroscopy, and radical trapping measurements. The overall data indicate that the superoxide O2•- and holes h+ are the principal species responsible for the pollutant photodegradation.

5.
Langmuir ; 29(43): 13315-21, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24083485

RESUMO

Heat-treated CaFe-layered double hydroxide samples were equilibrated under conditions of various relative humidities (11%, 43% and 75%). Measurements by FT-IR and dielectric relaxation spectroscopies revealed that partial to full reconstruction of the layered structure took place. Water types taking part in the reconstruction process were identified via dielectric relaxation measurements either at 298 K or on the flash-cooled (to 155 K) samples. The dynamics of water molecules at the various positions was also studied by this method, allowing the flash-cooled samples to warm up to 298 K.

6.
Pharmaceutics ; 14(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145546

RESUMO

Liposomal formulations, as versatile nanocarrier systems suitable for targeted delivery, have a highly focused role in the therapy development of unmet clinical needs and diagnostic imaging techniques. Formulating nanomedicine with suitable zeta potential is an essential but challenging task. Formulations with a minimum ±30 mV zeta potential are considered stable. The charge of the phospholipid bilayer can be adjusted with membrane additives. The present Quality by Design-derived study aimed to optimise liposomal formulations prepared via the thin-film hydration technique by applying stearylamine (SA) or dicetyl phosphate (DCP) as charge imparting agents. This 32 fractional factorial design-based study determined phosphatidylcholine, cholesterol, and SA/DCP molar ratios for liposomes with characteristics meeting the formulation requirements. The polynomials describing the effects on the zeta potential were calculated. The optimal molar ratios of the lipids were given as 12.0:5.0:5.0 for the SA-PBS pH 5.6 (optimised sample containing stearylamine) and 8.5:4.5:6.5 for the DCP-PBS pH 5.6 (optimised sample containing dicetyl phosphate) particles hydrated with phosphate-buffered saline pH 5.6. The SA-PBS pH 5.6 liposomes had a vesicle size of 108 ± 15 nm, 0.20 ± 0.04 polydispersity index, and +30.1 ± 1.2 mV zeta potential, while these values were given as 88 ± 14 nm, 0.21 ± 0.02, and -36.7 ± 3.3 mV for the DCP-PBS pH 5.6 vesicles. The prepared liposomes acquired the requirements of the zeta potential for stable formulations.

7.
ACS Omega ; 4(1): 130-139, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459319

RESUMO

Considerable effort has been devoted recently to replace platinum-based catalysts with their non-noble-metal counterparts in the oxygen reduction reaction (ORR) in fuel cells. Nitrogen-doped carbon structures emerged as possible candidates for this role, and their earth-abundant metal-decorated composites showed great promise. Here, we report on the simultaneous formation of nitrogen-doped graphene and iron nitride from the lyophilized mixture of graphene oxide and iron salt by high-temperature annealing in ammonia atmosphere. A mixture of FeN and Fe2N particles was formed with average particle size increasing from 23.4 to 127.0 nm and iron content ranging from 5 to 50 wt %. The electrocatalytic oxygen reduction activity was investigated via the rotating disk electrode method in alkaline media. The highest current density of 3.65 mA cm-2 at 1500 rpm rotation rate was achieved in the 20 wt % catalyst via the four-electrode reduction pathway, exceeding the activity of both the pristine iron nitride and the undecorated nitrogen-doped graphene. Since our catalysts showed improved methanol tolerance compared to the platinum-based ones, the formed non-noble-metal system offers a viable alternative to the platinum-decorated carbon black (Pt/CB) ORR catalysts in direct methanol fuel cells.

8.
ACS Appl Mater Interfaces ; 7(18): 9947-56, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25859883

RESUMO

Understanding of water-related electrical conduction is of utmost importance in applications that utilize solid-state proton conductors. However, in spite of the vast amount of theoretical and experimental work published in the literature, thus far its mechanism remained unsolved. In this study, the structure-related ambient temperature electrical conduction of one-dimensional hydrophilic nanostructures was investigated. Cerium phosphate nanowires with monoclinic and hexagonal crystal structures were synthesized via the hydrothermal and ambient temperature precipitation routes, and their structural and surface properties were examined by using high-resolution transmission electron microscopy, X-ray diffractometry, nitrogen and water sorption, temperature-programmed ammonia desorption, and potentiometric titration techniques. The relative humidity (RH)-dependent charge-transport processes of hexagonal and monoclinic nanowires were investigated by means of impedance spectroscopy and transient ionic current measurement techniques to gain insight into their atomistic level mechanism. Although considerable differences in RH-dependent conductivity were first found, the distinct characteristics collapsed into a master curve when specific surface area and acidity were taken into account, implying structure-independent proton conduction mechanism in both types of nanowires.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA