Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 15(9): 2603-15, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23809669

RESUMO

Micro-organisms are known to degrade a wide range of toxic substances. How the environment shapes microbial communities in polluted ecosystems and thus influences degradation capabilities is not yet fully understood. In this study, we investigated microbial communities in a highly complex environment: the capillary fringe and subjacent sediments in a hydrocarbon-contaminated aquifer. Sixty sediment sections were analysed using terminal restriction fragment length polymorphism (T-RFLP) fingerprinting, cloning and sequencing of bacterial and archaeal 16S rRNA genes, complemented by chemical analyses of petroleum hydrocarbons, methane, oxygen and alternative terminal electron acceptors. Multivariate statistics revealed concentrations of contaminants and the position of the water table as significant factors shaping the microbial community composition. Micro-organisms with highest T-RFLP abundances were related to sulphate reducers belonging to the genus Desulfosporosinus, fermenting bacteria of the genera Sedimentibacter and Smithella, and aerobic hydrocarbon degraders of the genus Acidovorax. Furthermore, the acetoclastic methanogens Methanosaeta, and hydrogenotrophic methanogens Methanocella and Methanoregula were detected. Whereas sulphate and sulphate reducers prevail at the contamination source, the detection of methane, fermenting bacteria and methanogenic archaea further downstream points towards syntrophic hydrocarbon degradation.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Água Subterrânea/microbiologia , Hidrocarbonetos/análise , Microbiologia da Água , Poluentes Químicos da Água/análise , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Alemanha , Água Subterrânea/química , Hidrocarbonetos/metabolismo , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/metabolismo
2.
J Contam Hydrol ; 87(1-2): 37-53, 2006 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-16828928

RESUMO

Methyl tert-butyl ether (MTBE) is one of the main additives in gasoline. Its degradation is known to be difficult in natural environments. In this study, significant MTBE degradation is demonstrated at a contaminated site in Leuna (eastern Germany). Since the extent of the plume appeared to be constant over the last 5 years, an extended study was performed to elucidate the degradation processes. Special attention was paid to the production, accumulation and degradation of metabolites and by-products. Groundwater samples from 105 monitoring wells were used to measure 20 different substances. During the degradation process, several intermediates such as tert-butyl alcohol (TBA), tert-butyl formate, formate and lactate were produced. However, the potentially carcinogenic by-product methacrylate was not detected in several hundred samples. At the Leuna site, MTBE degradation occurred under microaerobic conditions. In contrast to hydrocarbons and BTEX, there was no evidence for anaerobic MTBE degradation. Among the degradation products, TBA was found to be a useful intermediate to identify MTBE degradation, at least under microaerobic conditions. TBA accumulation was strongly correlated to MTBE degradation according to the kinetic properties of both degradation processes. Since maximum degradation rates (v(max)) and k(m) values were higher for MTBE (v(max)=2.3 mg/l/d and k(m)=3.2 mg/l) than for TBA (v(max)=1.35 mg/l/d and k(m)=0.05 mg/l), TBA significantly accumulated as an intermediate by-product. The field results were supported by bench scale model aquifer experiments.


Assuntos
Éteres Metílicos/análise , Éteres Metílicos/metabolismo , Biodegradação Ambiental , Elétrons , Alemanha , Éteres Metílicos/química , Oxirredução , Movimentos da Água , terc-Butil Álcool/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA