RESUMO
The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets complementary to the guide RNA and has been applied to programmable genome editing. Cas9-mediated cleavage requires a protospacer adjacent motif (PAM) juxtaposed with the DNA target sequence, thus constricting the range of targetable sites. Here, we report the 1.7 Å resolution crystal structures of Cas9 from Francisella novicida (FnCas9), one of the largest Cas9 orthologs, in complex with a guide RNA and its PAM-containing DNA targets. A structural comparison of FnCas9 with other Cas9 orthologs revealed striking conserved and divergent features among distantly related CRISPR-Cas9 systems. We found that FnCas9 recognizes the 5'-NGG-3' PAM, and used the structural information to create a variant that can recognize the more relaxed 5'-YG-3' PAM. Furthermore, we demonstrated that the FnCas9-ribonucleoprotein complex can be microinjected into mouse zygotes to edit endogenous sites with the 5'-YG-3' PAM, thus expanding the target space of the CRISPR-Cas9 toolbox.
Assuntos
Proteínas de Bactérias/química , Sistemas CRISPR-Cas , Endonucleases/química , Francisella/enzimologia , Engenharia Genética/métodos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Blastocisto/metabolismo , Proteína 9 Associada à CRISPR , Cristalografia por Raios X , Embrião de Mamíferos/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Camundongos , Microinjeções/métodos , Modelos Moleculares , RNA Guia de Cinetoplastídeos/genéticaRESUMO
Iron metabolism is closely associated with the pathogenesis of obesity. However, the mechanism of the iron-dependent regulation of adipocyte differentiation remains unclear. Here, we show that iron is essential for rewriting of epigenetic marks during adipocyte differentiation. Iron supply through lysosome-mediated ferritinophagy was found to be crucial during the early stage of adipocyte differentiation, and iron deficiency during this period suppressed subsequent terminal differentiation. This was associated with demethylation of both repressive histone marks and DNA in the genomic regions of adipocyte differentiation-associated genes, ãincluding Pparg, which encodes PPARγ, the master regulator of adipocyte differentiation. In addition, we identified several epigenetic demethylases to be responsible for iron-dependent adipocyte differentiation, with the histone demethylase jumonji domain-containing 1A and the DNA demethylase ten-eleven translocation 2 as the major enzymes. The interrelationship between repressive histone marks and DNA methylation was indicated by an integrated genome-wide association analysis, and was also supported by the findings that both histone and DNA demethylation were suppressed by either the inhibition of lysosomal ferritin flux or the knockdown of iron chaperone poly(rC)-binding protein 2. In summary, epigenetic regulations through iron-dependent control of epigenetic enzyme activities play an important role in the organized gene expression mechanisms of adipogenesis.
Assuntos
Estudo de Associação Genômica Ampla , Ferro , Ferro/metabolismo , Metilação de DNA/genética , Epigênese Genética , Adipócitos/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismoRESUMO
The cerebellum, the site where protein kinase C (PKC) was first discovered, contains the highest amount of PKC in the central nervous system, with PKCγ being the major isoform. Systemic PKCγ-knockout (KO) mice showed impaired motor coordination and deficient pruning of surplus climbing fibers (CFs) from developing cerebellar Purkinje cells (PCs). However, the physiological significance of PKCγ in the mature cerebellum and the cause of motor incoordination remain unknown. Using adeno-associated virus vectors targeting PCs, we showed that impaired motor coordination was restored by re-expression of PKCγ in mature PKCγ-KO mouse PCs in a kinase activity-dependent manner, while normal motor coordination in mature Prkcgfl/fl mice was impaired by the Cre-dependent removal of PKCγ from PCs. Notably, the rescue or removal of PKCγ from mature PKCγ-KO or Prkcgfl/fl mice, respectively, did not affect the CF innervation profile of PCs, suggesting the presence of a mechanism distinct from multiple CF innervation of PCs for the motor defects in PKCγ-deficient mice. We found marked potentiation of Ca2+-activated large-conductance K+ (BK) channel currents in PKCγ-deficient mice, as compared to wild-type mice, which decreased the membrane resistance, resulting in attenuation of the electrical signal during the propagation and significant alterations of the complex spike waveform. These changes in PKCγ-deficient mice were restored by the rescue of PKCγ or pharmacological suppression of BK channels. Our results suggest that PKCγ is a critical regulator that negatively modulates BK currents in PCs, which significantly influences PC output from the cerebellar cortex and, eventually, motor coordination.
Assuntos
Terapia Genética , Atividade Motora/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Proteína Quinase C/metabolismo , Células de Purkinje/enzimologia , Animais , Sinalização do Cálcio , Deleção de Genes , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Canais de Potássio Cálcio-Ativados/genética , Proteína Quinase C/genética , Potenciais SinápticosRESUMO
Most studies on fat appetite have focused on long-chain triglycerides (LCTs) due to their obesogenic properties. Medium-chain triglycerides (MCTs), conversely, exhibit antiobesogenic effects; however, the regulation of MCT intake remains elusive. Here, we demonstrate that mice can distinguish between MCTs and LCTs, and the specific appetite for MCTs is governed by hepatic ß-oxidation. We generated liver-specific medium-chain acyl-CoA dehydrogenase (MCAD)-deficient (MCADL-/-) mice and analyzed their preference for MCT and LCT solutions using glyceryl trioctanoate (C8-TG), glyceryl tridecanoate (C10-TG), corn oil, and lard oil in two-bottle choice tests conducted over 8 days. In addition, we used lick microstructure analyses to evaluate the palatability and appetite for MCT and LCT solutions. Finally, we measured the expression levels of genes associated with fat ingestion (Galanin, Qrfp, and Nmu) in the hypothalamus 2 h after oral gavage of fat. Compared with control mice, MCADL-/- mice exhibited a significantly reduced preference for MCT solutions, with no alteration in the preference for LCTs. Lick analysis revealed that MCADL-/- mice displayed a significantly decreased appetite for MCT solutions only while the palatability of both MCT and LCT solutions remained unaffected. Hypothalamic Galanin expression in control mice was elevated by oral gavage of C8-TG but not by LCTs, and this response was abrogated in MCADL-/- mice. In summary, our data suggest that hepatic ß-oxidation is required for MCT-specific appetite but not for LCT-specific appetite. The induction of hypothalamic galanin upon MCT ingestion, dependent on hepatic ß-oxidation, could be involved in the regulation of MCT-specific appetite.NEW & NOTEWORTHY Whether and how medium-chain triglyceride (MCT) intake is regulated remains unknown. Here, we showed that mice can discriminate between MCTs and LCTs. Hepatic ß-oxidation participates in MCT-specific appetite, and hypothalamic galanin may be one of the factors that regulate MCT intake. Because of the antiobesity effects of MCTs, studying MCT-specific appetite may help combat obesity by promoting the intake of MCTs instead of LCTs.
Assuntos
Acil-CoA Desidrogenase , Apetite , Ácidos Graxos , Fígado , Camundongos Knockout , Oxirredução , Triglicerídeos , Animais , Triglicerídeos/metabolismo , Camundongos , Oxirredução/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Ácidos Graxos/metabolismo , Apetite/efeitos dos fármacos , Apetite/fisiologia , Acil-CoA Desidrogenase/metabolismo , Acil-CoA Desidrogenase/genética , Camundongos Endogâmicos C57BL , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacosRESUMO
The precise control of endometrial receptivity is crucial for successful embryo implantation, which is strictly regulated by the ovarian steroid hormones estrogen and progesterone. Despite our improved understanding of the genetic regulation of implantation downstream of the action of hormones, we do not know much about the epigenetic regulation that occurs during early pregnancy. To investigate the role of the N6-methyladenosine (m6A) RNA modification in embryo implantation, we generated mice with conditional deletion of Mettl14, a core component of the m6A writer complex, in the uterus. These mice were infertile due to implantation failure. We showed that Mettl14-deficient uteri had aberrant upregulation of estrogen receptor α (ERα) signaling and ERα phosphorylation, but progesterone receptor (PGR) signaling was largely unaffected. Additionally, Mettl14 deletion led to abnormal activation of the innate immune pathway in Mettl14-deficient uteri. This effect was accompanied by the infiltration of immune cells, such as macrophages and dendritic cells, into the basal region of the endometrial epithelium. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) showed that genes involved in the innate immune response had decreased m6A peaks in Mettl14-deficient mice. These results suggest that Mettl14 plays a crucial role in successful implantation by precisely regulating both ERα signaling and innate immunity in the uterus.
Assuntos
Receptor alfa de Estrogênio , Receptores de Estrogênio , Gravidez , Feminino , Camundongos , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptores de Estrogênio/metabolismo , Epigênese Genética , Implantação do Embrião/fisiologia , Útero/metabolismo , Progesterona/metabolismo , RNA/metabolismoRESUMO
Synergistic effects among multiple gene mutations are involved in cancer development and progression. However, developing genetically modified mouse models to analyze various combinations of mutations is extremely labor-intensive and time-consuming. To address these problems, we developed a novel method for in vivo multiplexed genome editing of the murine uterus to model human endometrial carcinoma (EMC). To do this, we injected a CRISPR-Cas9 ribonucleoprotein complex into the uterine cavity of adult female mice, followed by electroporation. Evaluation of reporter mice demonstrated that genome editing occurred specifically in uterine epithelial cells, which are the origin of EMCs. Simultaneous targeting of Pten/Trp53/Lkb1, or targeting of Pten/Lkb1 along with the Ctnnb1ΔEx3 mutation, resulted in efficient generation of invasive tumors in wild-type females within 3 months. This novel method will enable rapid and easy validation of many combinations of gene mutations that lead to endometrial carcinogenesis.
Assuntos
Neoplasias do Endométrio , Edição de Genes , Camundongos , Feminino , Humanos , Animais , Edição de Genes/métodos , Sistemas CRISPR-Cas , Ribonucleoproteínas/genética , Eletroporação/métodos , Neoplasias do Endométrio/genéticaRESUMO
RAD2lL and REC8, meiosis-specific paralogs of the canonical cohesin subunit RAD21, are essential for proper formation of axial/lateral elements of the synaptonemal complex, synapsis of homologous chromosomes, and crossover recombination in mammalian meiosis. However, how many meiotic cohesins are present in germ cells has not been investigated because of the lack of an appropriate method of analysis. In the present study, to examine the intracellular amount of meiotic cohesins, we generated two strains of knock-in (KI) mice that expressed a 3×FLAG-tag at the C-terminus of RAD21L or REC8 protein using the CRISPR/Cas9 genome editing system. Both KI mice were fertile. Western blot analyses and immunocytochemical studies revealed that expression levels and localization patterns of both RAD21L-3×FLAG and REC8-3×FLAG in KI mice were similar to those in wild-type mice. After confirming that tagging of endogenous RAD21L and REC8 with 3×FLAG did not affect their expression profiles, we evaluated the levels of RAD21L-3×FLAG and REC8-3×FLAG in the testes of 2-week-old mice in which only RAD21L and REC8 but little RAD21 are expressed in the meiocytes. By comparing the band intensities of testicular RAD21L-3×FLAG and REC8-3×FLAG with 3×FLAG-tagged recombinant proteins of known concentrations in western blot analysis, we found that there were approximately 413,000 RAD21L and 453,000 REC8 molecules per spermatocyte in the early stages of prophase I. These findings provide new insights into the role played by cohesins in the process of meiotic chromosome organization in mammalian germ cells.
Assuntos
Proteínas Nucleares , Espermatócitos , Animais , Masculino , Camundongos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Meiose , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Espermatócitos/metabolismo , CoesinasRESUMO
Degeneration of the retinal pigmented epithelium (RPE) and aberrant blood vessel growth in the eye are advanced-stage processes in blinding diseases such as age-related macular degeneration (AMD), which affect hundreds of millions of people worldwide. Loss of the RNase DICER1, an essential factor in micro-RNA biogenesis, is implicated in RPE atrophy. However, the functional implications of DICER1 loss in choroidal and retinal neovascularization are unknown. Here, we report that two independent hypomorphic mouse strains, as well as a separate model of postnatal RPE-specific DICER1 ablation, all presented with spontaneous RPE degeneration and choroidal and retinal neovascularization. DICER1 hypomorphic mice lacking critical inflammasome components or the innate immune adaptor MyD88 developed less severe RPE atrophy and pathological neovascularization. DICER1 abundance was also reduced in retinas of the JR5558 mouse model of spontaneous choroidal neovascularization. Finally, adenoassociated vector-mediated gene delivery of a truncated DICER1 variant (OptiDicer) reduced spontaneous choroidal neovascularization in JR5558 mice. Collectively, these findings significantly expand the repertoire of DICER1 in preserving retinal homeostasis by preventing both RPE degeneration and pathological neovascularization.
Assuntos
RNA Helicases DEAD-box/metabolismo , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/irrigação sanguínea , Ribonuclease III/metabolismo , Animais , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Neovascularização de Coroide/fisiopatologia , RNA Helicases DEAD-box/genética , Humanos , Degeneração Macular/genética , Degeneração Macular/patologia , Degeneração Macular/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/parasitologia , Neovascularização Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Ribonuclease III/genéticaRESUMO
Knockout mice are useful tools that can provide information about the normal function of genes, including their biochemical, developmental, and physiological roles. One problem associated with the generation of knockout mice is that the loss of some genes of interest produces a lethal phenotype. Therefore, the use of conditioned knockout mice, in which genes are disrupted in specific organs, is essential for the elucidation of disease pathogenesis and the verification of drug targets. In general, conditional knockout mice are produced using the Cre/loxP system; however, the production of the large numbers of Cre/flox knockout and control mice required for analysis requires substantial time and effort. Here, we describe the generation of liver-specific conditional knockout mice via the introduction of lipid nanoparticles encapsulating Cre mRNA into the liver of floxed mice. This technique does not require the production of offspring by mating floxed mice and is therefore more convenient than the conventional method. The results presented here demonstrate that the LNP-based method enables liver-specific gene knockout in a short period of time.
RESUMO
Haploinsufficiency of NSD1, which dimethylates histone H3 lysine 36 (H3K36), causes Sotos syndrome (SoS), an overgrowth syndrome. DNMT3A and DNMT3B recognizes H3K36 trimethylation (H3K36me3) through PWWP domain to exert de novo DNA methyltransferase activity and establish imprinted differentially methylated regions (DMRs). Since decrease of H3K36me3 and genome-wide DNA hypomethylation in SoS were observed, hypomethylation of imprinted DMRs in SoS was suggested. We explored DNA methylation status of 28 imprinted DMRs in 31 SoS patients with NSD1 defect and found that hypomethylation of IGF2-DMR0 and IG-DMR in a substantial proportion of SoS patients. Luciferase assay revealed that IGF2-DMR0 enhanced transcription from the IGF2 P0 promoter but not the P3 and P4 promoters. Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) revealed active enhancer histone modifications at IGF2-DMR0, with high enrichment of H3K4me1 and H3 lysine 27 acetylation (H3K27ac). CRISPR-Cas9 epigenome editing revealed that specifically induced hypomethylation at IGF2-DMR0 increased transcription from the P0 promoter but not the P3 and P4 promoters. NSD1 knockdown suggested that NSD1 targeted IGF2-DMR0; however, IGF2-DMR0 DNA methylation and IGF2 expression were unaltered. This study could elucidate the function of IGF2-DMR0 as a DNA methylation dependent, P0 promoter-specific enhancer. NSD1 may play a role in the establishment or maintenance of IGF2-DMR0 methylation during the postimplantation period.
Assuntos
Metilação de DNA , Histona-Lisina N-Metiltransferase/genética , Fator de Crescimento Insulin-Like II/genética , Síndrome de Sotos/genética , Sistemas CRISPR-Cas , Criança , Pré-Escolar , Elementos Facilitadores Genéticos , Epigenoma , Feminino , Deleção de Genes , Impressão Genômica , Células HEK293 , Histonas/química , Humanos , Lactente , Recém-Nascido , Lisina/química , Masculino , Fenótipo , Mutação Puntual , Regiões Promotoras GenéticasRESUMO
Overexpression of a gene of interest is a general approach used in both basic research and therapeutic applications. However, the conventional approach involving overexpression of exogenous genes has difficulty achieving complete genome coverage, and is also limited by the cloning capacity of viral vectors. Therefore, an alternative approach would be to drive the expression of an endogenous gene using an artificial transcriptional activator. Fusion proteins of dCas9 and a transcription activation domain, such as dCas9-VP64, are widely used for activation of endogenous genes. However, when using a single sgRNA, the activation range is low. Consequently, tiling of several sgRNAs is required for robust transcriptional activation. Here we describe the screening of factors that exhibit the best synergistic activation of gene expression with TET1 in the dCas9-SunTag format. All seven factors examined showed some synergy with TET1. Among them, VP64 gave the best results. Thus, simultaneous tethering of VP64 and TET1 to a target gene using an optimized dCas9-SunTag format synergistically activates gene expression using a single sgRNA.
Assuntos
Sistemas CRISPR-Cas , Engenharia Genética/métodos , Regulação para Cima , Células A549 , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Humanos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismoRESUMO
Primary liver tumors are mainly represented by hepatocellular carcinoma (HCC), one of the most aggressive and resistant forms of cancer. Liver tumorigenesis is characterized by an accumulation of epigenetic abnormalities, leading to gene extinction and loss of hepatocyte differentiation. The aim of this work was to investigate the feasibility of converting liver cancer cells toward a less aggressive and differentiated phenotype using a process called epigenetic reconditioning. Here, we showed that an epigenetic regimen with non-cytotoxic doses of the demethylating compound 5-azacytidine (5-AZA) promoted an anti-cancer response by inhibiting HCC cell tumorigenicity. Furthermore, epigenetic reconditioning improved sorafenib response. Remarkably, epigenetic treatment was associated with a significant restoration of differentiation, as attested by the increased expression of characteristic hepatocyte markers in reconditioned cells. In particular, we showed that reexpression of these epigenetically silenced liver genes following 5-AZA treatment or after knockdown of DNA methyltransferase 1 (DNMT1) was the result of regional CpG demethylation. Lastly, we confirmed the efficacy of HCC differentiation therapy by epigenetic reconditioning using an in vivo tumor growth model. In summary, this work demonstrates that epigenetic reconditioning using the demethylating compound 5-AZA shows therapeutic significance for liver cancer and is potentially attractive for the treatment of solid tumors.
Assuntos
Carcinogênese/genética , Diferenciação Celular/genética , Epigênese Genética/genética , Neoplasias Hepáticas/genética , Animais , Azacitidina/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Camundongos NusRESUMO
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with core symptoms that include poor social communication, restricted interests, and repetitive behaviors. Several ASD mouse models exhibit impaired social interaction, anxiety-like behavior, and elevated perseveration. Large-scale whole exome sequencing studies identified many genes putatively associated with ASD. Like chromodomain helicase DNA binding protein 8 (CHD8), the most frequently mutated gene in individuals with ASD, the candidate gene AT-rich interaction domain 1B (ARID1B) encodes a chromatin remodeling factor. Arid1b heterozygous knockout (hKO) mice exhibited ASD-like traits related to social behavior, anxiety, and perseveration, in addition to associated features reported in some cases of ASD, such as reduced weight, impaired motor coordination, and hydrocephalus. Hydrocephalus was present in 5 of 91 hKO mice, while it was not observed in wild-type littermates (0 of 188). Genome-wide gene expression patterns in Arid1b hKO mice were similar to those in ASD patients and Chd8-haploinsufficient mice, an ASD model, and to developmental changes in gene expression in fast-spiking cells in the mouse brain. Our results suggest that Arid1b haploinsufficiency causes ASD-like phenotypes in mice.
Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Ligação a DNA/genética , Haploinsuficiência/genética , Fatores de Transcrição/genética , Animais , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal , Montagem e Desmontagem da Cromatina/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Hidrocefalia/genética , Hidrocefalia/fisiopatologia , Camundongos , Camundongos KnockoutRESUMO
Genome editing technologies represent a major breakthrough that has dramatically altered strategies in a wide range of biological studies. Genome editing simplifies and accelerates the creation of animal disease models and enables construction of models in most animal species, even those that are not amenable to conventional gene targeting technology.
Assuntos
Disciplinas das Ciências Biológicas/tendências , Edição de Genes/tendências , Medicina/tendências , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Modelos Animais de Doenças , Edição de Genes/história , Edição de Genes/métodos , Marcação de Genes/métodos , Terapia Genética/história , Terapia Genética/métodos , Terapia Genética/tendências , História do Século XXI , HumanosRESUMO
Vertebrate genomes are highly methylated at cytosine residues in CpG sequences. CpG methylation plays an important role in epigenetic gene silencing and genome stability. Compared with other epigenetic modifications, CpG methylation is thought to be relatively stable; however, it is sometimes affected by environmental changes, leading to epigenetic instability and disease. CpG methylation is reversible and regulated by DNA methyltransferases and demethylases including ten-eleven translocation. Here, we discuss CpG methylation instability and the regulation of CpG methylation by DNA methyltransferases and ten-eleven translocation in pluripotent stem cells.
Assuntos
Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Oxigenases de Função Mista/metabolismo , Células-Tronco Pluripotentes , Proteínas Proto-Oncogênicas/metabolismo , Animais , Inativação Gênica , Regiões Promotoras GenéticasRESUMO
Clustered regularly at interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) nucleases, so-called CRISPR/Cas, was recently developed as an epoch-making genome engineering technology. This system only requires Cas9 nuclease and single-guide RNA complementary to a target locus. CRISPR/Cas enables the generation of knockout cells and animals in a single step. This system can also be used to generate multiple mutations and knockin in a single step, which is not possible using other methods. In this review, we provide an overview of genome editing by CRISPR/Cas in pluripotent stem cells and mice.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Camundongos Knockout/genética , Modelos Genéticos , Células-Tronco Pluripotentes/citologia , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/enzimologia , Células-Tronco Embrionárias/metabolismo , Edição de Genes/tendências , Técnicas de Introdução de Genes/tendências , Técnicas de Inativação de Genes/tendências , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/enzimologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Knockout/metabolismo , Mosaicismo , Células-Tronco Pluripotentes/enzimologia , Células-Tronco Pluripotentes/metabolismoRESUMO
Gene targeting technologies are essential for the analysis of gene functions. Knockout mouse generation via genetic modification of embryonic stem cells (ESCs) is the commonest example, but it is a time-consuming and labor-intensive procedure. Recently, a novel genome editing technology called CRISPR/Cas has enabled the direct production of knockout mice by non-homologous end joining (NHEJ)-mediated mutations. Unexpectedly, however, it generally exhibits a low efficiency in homologous recombination (HR) and is prone to high mosaicism. Meanwhile, gene targeting using ESCs is still being improved, as reported by Fukuda et al. in this issue. Here, we outline current gene targeting technologies with special emphasis on HR-mediated technologies, which are currently being performed using these two major strategies.
Assuntos
Marcação de Genes , Engenharia Genética/métodos , Genoma , Animais , Sistemas CRISPR-Cas , Ciclo Celular , Células-Tronco Embrionárias/citologia , Edição de Genes , Recombinação Homóloga , Humanos , Camundongos , Camundongos Knockout , Modelos Genéticos , MutaçãoRESUMO
The precise mechanisms of tissue fibrosis have not yet been elucidated in systemic sclerosis (SSc). However, studies of the regulation of DNA methylation, the most widely studied epigenetic mechanism, have confirmed the involvement of the TET family proteins, recently identified DNA demethylases, in the pathogenesis of SSc. The mRNA levels of TET family members were compared in normal and SSc fibroblasts. The effects of hypoxia and siRNA specific to HIF-1α on TET expression were also examined. Global methylation status was analysed by LUMA. The presence of 5-hydroxymethylcytosine (5hmC) in SSc was examined by immunohistochemistry. The level of TET1 mRNA in SSc fibroblasts was elevated by 1.68 fold compared with that of normal fibroblasts, but the expression levels of TET2 and TET3 were comparable between both cell types. The expression levels of DNMT1 and DNMT3B mRNA have a tendency to elevate in SSc fibroblasts. Among TET family members, the expression of TET1 was exclusively induced by hypoxia via HIF-1α-independent pathways in SSc fibroblasts, but not in normal fibroblasts. The methylation level was decreased in SSc fibroblasts relative to normal fibroblasts, and 5hmC was present in dermal fibroblasts of skin sections from patients with SSc. TET1 expression in SSc fibroblasts was abnormally regulated in the hypoxic environment and accompanied by global DNA hypomethylation, suggesting the involvement of aberrant DNA methylation in the pathogenesis of SSc.
Assuntos
Metilação de DNA , Fibroblastos/enzimologia , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Escleroderma Sistêmico/enzimologia , Estudos de Casos e Controles , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Humanos , Hipóxia/metabolismo , Fator de Crescimento Transformador beta/metabolismo , DNA Metiltransferase 3BRESUMO
Haploid cells are useful for studying gene functions because disruption of a single allele can cause loss-of-function phenotypes. Recent success in generating haploid embryonic stem cells (ESCs) in mice, rats, and monkeys provides a new platform for simple genetic manipulation of the mammalian genome. Use of haploid ESCs enhances the genome-editing potential of the CRISPR/Cas system. For example, CRISPR/Cas was used in haploid ESCs to generate multiple knockouts and large deletions at high efficiency. In addition, genome-wide screening is facilitated by haploid cell lines containing gene knockout libraries.
Assuntos
Genoma , Haploidia , Mamíferos/genética , Edição de RNA/genética , Animais , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , HumanosRESUMO
UNLABELLED: MicroRNAs (miRNAs) are evolutionary conserved small RNAs that post-transcriptionally regulate the expression of target genes. To date, the role of miRNAs in liver development is not fully understood. By using an experimental model that allows the induced and controlled differentiation of mouse fetal hepatoblasts (MFHs) into mature hepatocytes, we identified miR-148a as a hepatospecific miRNA highly expressed in adult liver. The main finding of this study revealed that miR-148a was critical for hepatic differentiation through the direct targeting of DNA methyltransferase (DNMT) 1, a major enzyme responsible for epigenetic silencing, thereby allowing the promotion of the "adult liver" phenotype. It was also confirmed that the reduction of DNMT1 by RNA interference significantly promoted the expression of the major hepatic biomarkers. In addition to the essential role of miR-148a in hepatocyte maturation, we identified its beneficial effect through the repression of hepatocellular carcinoma (HCC) cell malignancy. miR-148a expression was frequently down-regulated in biopsies of HCC patients as well as in mouse and human HCC cell lines. Overexpressing miR-148a led to an enhancement of albumin production and a drastic inhibition of the invasive properties of HCC cells, whereas miR-148a silencing had the opposite consequences. Finally, we showed that miR-148a exerted its tumor-suppressive effect by regulating the c-Met oncogene, regardless of the DNMT1 expression level. CONCLUSION: miR-148a is essential for the physiology of the liver because it promotes the hepatospecific phenotype and acts as a tumor suppressor. Most important, this report is the first to demonstrate a functional role for a specific miRNA in liver development through regulation of the DNMT1 enzyme.