RESUMO
Aberrant phase separation of globular proteins is associated with many diseases. Here, we use a model protein system to understand how the unfolded states of globular proteins drive phase separation and the formation of unfolded protein deposits (UPODs). We find that for UPODs to form, the concentrations of unfolded molecules must be above a threshold value. Additionally, unfolded molecules must possess appropriate sequence grammars to drive phase separation. While UPODs recruit molecular chaperones, their compositional profiles are also influenced by synergistic physicochemical interactions governed by the sequence grammars of unfolded proteins and cellular proteins. Overall, the driving forces for phase separation and the compositional profiles of UPODs are governed by the sequence grammars of unfolded proteins. Our studies highlight the need for uncovering the sequence grammars of unfolded proteins that drive UPOD formation and cause gain-of-function interactions whereby proteins are aberrantly recruited into UPODs.
Assuntos
Chaperonas Moleculares , Dobramento de Proteína , Chaperonas Moleculares/metabolismoRESUMO
Viruses form extensive interfaces with host proteins to modulate the biology of the infected cell, frequently via multifunctional viral proteins. These proteins are conventionally considered as assemblies of independent functional modules, where the presence or absence of modules determines the overall composite phenotype. However, this model cannot account for functions observed in specific viral proteins. For example, rabies virus (RABV) P3 protein is a truncated form of the pathogenicity factor P protein, but displays a unique phenotype with functions not seen in longer isoforms, indicating that changes beyond the simple complement of functional modules define the functions of P3. Here, we report structural and cellular analyses of P3 derived from the pathogenic RABV strain Nishigahara (Nish) and an attenuated derivative strain (Ni-CE). We identify a network of intraprotomer interactions involving the globular C-terminal domain and intrinsically disordered regions (IDRs) of the N-terminal region that characterize the fully functional Nish P3 to fluctuate between open and closed states, whereas the defective Ni-CE P3 is predominantly open. This conformational difference appears to be due to the single mutation N226H in Ni-CE P3. We find that Nish P3, but not Ni-CE or N226H P3, undergoes liquid-liquid phase separation and this property correlates with the capacity of P3 to interact with different cellular membrane-less organelles, including those associated with immune evasion and pathogenesis. Our analyses propose that discrete functions of a critical multifunctional viral protein depend on the conformational arrangements of distant individual domains and IDRs, in addition to their independent functions.
Assuntos
Vírus da Raiva , Raiva , Humanos , Vírus da Raiva/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Isoformas de Proteínas/metabolismoRESUMO
Hexanucleotide expansion mutations in C9ORF72 are a frequent cause of amyotrophic lateral sclerosis. We previously reported that long arginine-rich dipeptide repeats (DPRs), mimicking abnormal proteins expressed from the hexanucleotide expansion, caused translation stalling when expressed in cell culture models. Whether this stalling provides a mechanism of pathogenicity remains to be determined. Here, we explored the molecular features of DPR-induced stalling and examined whether known mechanisms such as ribosome quality control (RQC) regulate translation elongation on sequences that encode arginine-rich DPRs. We demonstrate that arginine-rich DPRs lead to stalling in a length-dependent manner, with lengths longer than 40 repeats invoking severe translation arrest. Mutational screening of 40×Gly-Xxx DPRs shows that stalling is most pronounced when Xxx is a charged amino acid (Arg, Lys, Glu, or Asp). Through a genome-wide knockout screen, we find that genes regulating stalling on polyadenosine mRNA coding for poly-Lys, a canonical RQC substrate, act differently in the case of arginine-rich DPRs. Indeed, these findings point to a limited scope for natural regulatory responses to resolve the arginine-rich DPR stalls, even though the stalls may be sensed, as evidenced by an upregulation of RQC gene expression. These findings therefore implicate arginine-rich DPR-mediated stalled ribosomes as a source of stress and toxicity and may be a crucial component in pathomechanisms.
Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Arginina/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipeptídeos/química , Ribossomos/genética , Ribossomos/metabolismo , Técnicas de Inativação de Genes , Mutação , Regulação para CimaRESUMO
Chaperones and other quality control machinery guard proteins from inappropriate aggregation, which is a hallmark of neurodegenerative diseases. However, how the systems that regulate the "foldedness" of the proteome remain buffered under stress conditions and in different cellular compartments remains incompletely understood. In this study, we applied a FRET-based strategy to explore how well quality control machinery protects against the misfolding and aggregation of "bait" biosensor proteins, made from the prokaryotic ribonuclease barnase, in the nucleus and cytosol of human embryonic kidney 293T cells. We found that those barnase biosensors were prone to misfolding, were less engaged by quality control machinery, and more prone to inappropriate aggregation in the nucleus as compared with the cytosol, and that these effects could be regulated by chaperone Hsp70-related machinery. Furthermore, aggregation of mutant huntingtin exon 1 protein (Httex1) in the cytosol appeared to outcompete and thus prevented the engagement of quality control machinery with the biosensor in the cytosol. This effect correlated with reduced levels of DNAJB1 and HSPA1A chaperones in the cell outside those sequestered to the aggregates, particularly in the nucleus. Unexpectedly, we found Httex1 aggregation also increased the apparent engagement of the barnase biosensor with quality control machinery in the nucleus suggesting an independent implementation of "holdase" activity of chaperones other than DNAJB1 and HSPA1A. Collectively, these results suggest that proteostasis stress can trigger a rebalancing of chaperone abundance in different subcellular compartments through a dynamic network involving different chaperone-client interactions.
Assuntos
Técnicas Biossensoriais , Agregados Proteicos , Citosol/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dobramento de ProteínaRESUMO
In Huntington's disease (HD), a key pathological feature includes the development of inclusion-bodies of fragments of the mutant huntingtin protein in the neurons of the striatum and hippocampus. To examine the molecular changes associated with inclusion-body formation, we applied MALDI-mass spectrometry imaging and deuterium pulse labelling to determine lipid levels and synthesis rates in the hippocampus of a transgenic mouse model of HD (R6/1 line). The R6/1 HD mice lacked inclusions in the hippocampus at 6 weeks of age (pre-symptomatic), whereas inclusions were pervasive by 16 weeks of age (symptomatic). Hippocampal subfields (CA1, CA3 and DG), which formed the highest density of inclusion formation in the mouse brain showed a reduction in the relative abundance of neuron-enriched lipids that have roles in neurotransmission, synaptic plasticity, neurogenesis, and ER-stress protection. Lipids involved in the adaptive response to ER stress (phosphatidylinositol, phosphatidic acid, and ganglioside classes) displayed increased rates of synthesis in HD mice relative to WT mice at all the ages examined, including prior to the formation of the inclusion bodies. Our findings, therefore, support a role for ER stress occurring pre-symptomatically and potentially contributing to pathological mechanisms underlying HD.
Assuntos
Doença de Huntington , Camundongos , Animais , Camundongos Transgênicos , Doença de Huntington/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças , Lipídeos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismoRESUMO
The accumulation of protein deposits in neurodegenerative diseases has been hypothesized to depend on a metastable subproteome vulnerable to aggregation. To investigate this phenomenon and the mechanisms that regulate it, we measured the solubility of the proteome in the mouse Neuro2a cell line under six different protein homeostasis stresses: 1) Huntington's disease proteotoxicity, 2) Hsp70, 3) Hsp90, 4) proteasome, 5) endoplasmic reticulum (ER)-mediated folding inhibition, and 6) oxidative stress. Overall, we found that about one-fifth of the proteome changed solubility with almost all of the increases in insolubility were counteracted by increases in solubility of other proteins. Each stress directed a highly specific pattern of change, which reflected the remodeling of protein complexes involved in adaptation to perturbation, most notably, stress granule (SG) proteins, which responded differently to different stresses. These results indicate that the protein homeostasis system is organized in a modular manner and aggregation patterns were not correlated with protein folding stability (ΔG). Instead, distinct cellular mechanisms regulate assembly patterns of multiple classes of protein complexes under different stress conditions.
Assuntos
Proteoma/química , Proteostase/fisiologia , Estresse Fisiológico , Animais , Linhagem Celular Tumoral , Proteína Huntingtina/química , Proteína Huntingtina/genética , Ligantes , Camundongos , Mutação , Agregados Proteicos , Dobramento de Proteína , Proteoma/metabolismo , SolubilidadeRESUMO
Maintaining protein homeostasis (proteostasis) is essential for cellular health and is governed by a network of quality control machinery comprising over 800 genes. When proteostasis becomes imbalanced, proteins can abnormally aggregate or become mislocalized. Inappropriate protein aggregation and proteostasis imbalance are two of the central pathological features of common neurodegenerative diseases including Alzheimer, Parkinson, Huntington, and motor neuron diseases. How aggregation contributes to the pathogenic mechanisms of disease remains incompletely understood. Here, we integrate some of the key and emerging ideas as to how protein aggregation relates to imbalanced proteostasis with an emphasis on Huntington disease as our area of main expertise. We propose the term "aggregomics" be coined in reference to how aggregation of particular proteins concomitantly influences the spatial organization and protein-protein interactions of the surrounding proteome. Meta-analysis of aggregated interactomes from various published datasets reveals chaperones and RNA-binding proteins are common components across various disease contexts. We conclude with an examination of therapeutic avenues targeting proteostasis mechanisms.
Assuntos
Chaperonas Moleculares/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Proteostase , Proteínas de Ligação a RNA/metabolismo , Animais , HumanosRESUMO
Eukaryotic cells respond to heat shock through several regulatory processes including upregulation of stress responsive chaperones and reversible shutdown of cellular activities through formation of protein assemblies. However, the underlying regulatory mechanisms of the recovery of these heat-induced protein assemblies remain largely elusive. Here, we measured the proteome abundance and solubility changes during recovery from heat shock in the mouse Neuro2a cell line. We found that prefoldins and translation machinery are rapidly down-regulated as the first step in the heat shock response. Analysis of proteome solubility reveals that a rapid mobilization of protein quality control machineries, along with changes in cellular energy metabolism, translational activity, and actin cytoskeleton are fundamental to the early stress responses. In contrast, longer term adaptation to stress involves renewal of core cellular components. Inhibition of the Hsp70 family, pivotal for the heat shock response, selectively and negatively affects the ribosomal machinery and delays the solubility recovery of many nuclear proteins. ProteomeXchange: PXD030069.
Assuntos
Censos , Proteoma , Animais , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico/fisiologia , Camundongos , Proteoma/análise , SolubilidadeRESUMO
Tau can adopt distinct fibril conformations in different human neurodegenerative diseases, which may invoke distinct pathological mechanisms. In a recent issue, Weismiller et al. showed that intramolecular disulfide links between cys291 and cys322 for a specific tau isoform containing four microtubule-binding repeats direct the formation of a structurally distinct amyloid polymorph. These findings have implications in how oxidative stress can flip switches of tau polymorphism in these diseases.
Assuntos
Amiloidose , Cisteína , Amiloide/genética , Proteínas Amiloidogênicas , Humanos , Proteínas tau/genéticaRESUMO
C9ORF72-associated Motor Neuron Disease patients feature abnormal expression of 5 dipeptide repeat (DPR) polymers. Here we used quantitative proteomics in a mouse neuronal-like cell line (Neuro2a) to demonstrate that the Arg residues in the most toxic DPRS, PR and GR, leads to a promiscuous binding to the proteome compared with a relative sparse binding of the more inert AP and GA. Notable targets included ribosomal proteins, translation initiation factors and translation elongation factors. PR and GR comprising more than 10 repeats appeared to robustly stall on ribosomes during translation suggesting Arg-rich peptide domains can electrostatically jam the ribosome exit tunnel during synthesis. Poly-GR also recruited arginine methylases, induced hypomethylation of endogenous proteins, and induced a profound destabilization of the actin cytoskeleton. Our findings point to arginine in GR and PR polymers as multivalent toxins to translation as well as arginine methylation that may explain the dysfunction of biological processes including ribosome biogenesis, mRNA splicing and cytoskeleton assembly.
Assuntos
Arginina/metabolismo , Arginina/toxicidade , Proteína C9orf72/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Metilação/efeitos dos fármacos , Camundongos , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/metabolismoRESUMO
Huntington's disease is caused by polyglutamine (polyQ)-expansion mutations in the CAG tandem repeat of the Huntingtin gene. The central feature of Huntington's disease pathology is the aggregation of mutant Huntingtin (Htt) protein into micrometer-sized inclusion bodies. Soluble mutant Htt states are most proteotoxic and trigger an enhanced risk of death whereas inclusions confer different changes to cellular health, and may even provide adaptive responses to stress. Yet the molecular mechanisms underpinning these changes remain unclear. Using the flow cytometry method of pulse-shape analysis (PulSA) to sort neuroblastoma (Neuro2a) cells enriched with mutant or wild-type Htt into different aggregation states, we clarified which transcriptional signatures were specifically attributable to cells before versus after inclusion assembly. Dampened CREB signalling was the most striking change overall and invoked specifically by soluble mutant Httex1 states. Toxicity could be rescued by stimulation of CREB signalling. Other biological processes mapped to different changes before and after aggregation included NF-kB signalling, autophagy, SUMOylation, transcription regulation by histone deacetylases and BRD4, NAD+ biosynthesis, ribosome biogenesis and altered HIF-1 signalling. These findings open the path for therapeutic strategies targeting key molecular changes invoked prior to, and subsequently to, Httex1 aggregation.
Assuntos
Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Mutação , Agregação Patológica de Proteínas/metabolismo , Transdução de Sinais , Transcriptoma , Animais , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Éxons , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Agregação Patológica de Proteínas/genéticaRESUMO
Protein aggregation is a hallmark of the major neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's and motor neuron and is a symptom of a breakdown in the management of proteome foldedness. Indeed, it is remarkable that under normal conditions cells can keep their proteome in a highly crowded and confined space without uncontrollable aggregation. Proteins pose a particular challenge relative to other classes of biomolecules because upon synthesis they must typically follow a complex folding pathway to reach their functional conformation (native state). Non-native conformations, including the unfolded nascent chain, are highly prone to aberrant interactions, leading to aggregation. Here we review recent advances in knowledge of proteostasis, approaches to monitor proteostasis and the impact that protein aggregation has on biology. We also include discussion of the outstanding challenges. © 2017 IUBMB Life, 69(2):49-54, 2017.
Assuntos
Doenças Neurodegenerativas/metabolismo , Agregação Patológica de Proteínas/genética , Dobramento de Proteína , Proteoma/química , Humanos , Doenças Neurodegenerativas/patologia , Conformação Proteica , Proteoma/genéticaRESUMO
Huntington's disease is caused by a CAG trinucleotide expansion mutation in the Huntingtin gene that leads to an artificially long polyglutamine sequence in the Huntingtin protein. A key feature of the disease is the intracellular aggregation of the Huntingtin exon 1 protein (Httex1) into micrometer sized inclusion bodies. The aggregation process of Httex1 has been extensively studied in vitro, however, the crucial early events of nucleation and aggregation in the cell remain elusive. Here, we studied the conformational dynamics and self-association of Httex1 by in-cell experiments using laser-induced temperature jumps and analytical ultracentrifugation. Both short and long polyglutamine variants of Httex1 underwent an apparent temperature-induced conformational collapse. The temperature jumps generated a population of kinetically trapped species selectively for the longer polyglutamine variants of Httex1 proteins. Their occurrence correlated with the formation of inclusion bodies suggesting that such species trigger further self-association.
Assuntos
Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Agregação Patológica de Proteínas/fisiopatologia , Proteína Huntingtina/genética , Doença de Huntington/fisiopatologia , Técnicas In Vitro , Corpos de Inclusão/metabolismo , Lasers , Modelos Moleculares , Mutação , Peptídeos/química , Dobramento de Proteína , Estrutura Terciária de Proteína , Temperatura , UltracentrifugaçãoRESUMO
Current methods for the quantitation of membrane protein trafficking rely heavily on microscopy, which has limited quantitative capacity for analyses of cell populations and is cumbersome to perform. Here we describe a simple flow cytometry-based method that circumvents these limitations. The method utilizes fluorescent pulse-width measurements as a highly sensitive indicator to monitor the changes in intracellular distributions of a fluorescently labelled molecule in a cell. Pulse-width analysis enabled us to discriminate cells with target proteins in different intracellular locations including Golgi, lyso-endosomal network and the plasma membrane, as well as detecting morphological changes in organelles such as Golgi perturbation. The movement of endogenous and exogenous retrograde cargo was tracked from the plasma membrane-to-endosomes-to-Golgi, by decreasing pulse-width values. A block in transport upon RNAi-mediated ablation of transport machinery was readily quantified, demonstrating the versatility of this technique to identify pathway inhibitors. We also showed that pulse-width can be exploited to sort and recover cells based on different intracellular staining patterns, e.g. early endosomes and Golgi, opening up novel downstream applications. Overall, the method provides new capabilities for viewing membrane transport in thousands of cells per minute, unbiased analysis of the trafficking of cargo, and the potential for rapid screening of inhibitors of trafficking pathways.
Assuntos
Endossomos/metabolismo , Citometria de Fluxo/métodos , Complexo de Golgi/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Endossomos/fisiologia , Complexo de Golgi/fisiologia , Células HeLa , Humanos , Lisossomos/fisiologiaRESUMO
A characteristic of many neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), is the aggregation of specific proteins into protein inclusions and/or plaques in degenerating brains. While much of the aggregated protein consists of disease specific proteins, such as amyloid-ß, α-synuclein, or superoxide dismutase1 (SOD1), many other proteins are known to aggregate in these disorders. Although the role of protein aggregates in the pathogenesis of neurodegenerative diseases remains unknown, the ubiquitous association of misfolded and aggregated proteins indicates that significant dysfunction in protein homeostasis (proteostasis) occurs in these diseases. Proteostasis is the concept that the integrity of the proteome is in fine balance and requires proteins in a specific conformation, concentration, and location to be functional. In this review, we discuss the role of specific mechanisms, both inside and outside cells, which maintain proteostasis, including molecular chaperones, protein degradation pathways, and the active formation of inclusions, in neurodegenerative diseases associated with protein aggregation. A characteristic of many neurodegenerative diseases is the aggregation of specific proteins, which alone provides strong evidence that protein homeostasis is disrupted in these disease states. Proteostasis is the maintenance of the proteome in the correct conformation, concentration, and location by functional pathways such as molecular chaperones and protein degradation machinery. Here, we discuss the potential roles of quality control pathways, both inside and outside cells, in the loss of proteostasis during aging and disease.
Assuntos
Doenças Neurodegenerativas/metabolismo , Proteólise , Deficiências na Proteostase/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/patologia , Dobramento de Proteína , Mapas de Interação de Proteínas/fisiologia , Deficiências na Proteostase/patologia , Ubiquitina/metabolismoRESUMO
Protein aggregation into intracellular inclusions is a key feature of many neurodegenerative disorders. A common theme has emerged that inappropriate self-aggregation of misfolded or mutant polypeptide sequences is detrimental to cell health. Yet protein quality control mechanisms may also deliberately cluster them together into distinct inclusion subtypes, including the insoluble protein deposit (IPOD) and the juxtanuclear quality control (JUNQ). Here we investigated how the intrinsic oligomeric state of three model systems of disease-relevant mutant protein and peptide sequences relates to the IPOD and JUNQ patterns of aggregation using sedimentation velocity analysis. Two of the models (polyalanine (37A) and superoxide dismutase 1 (SOD1) mutants A4V and G85R) accumulated into the same JUNQ-like inclusion whereas the other, polyglutamine (72Q), formed spatially distinct IPOD-like inclusions. Using flow cytometry pulse shape analysis (PulSA) to separate cells with inclusions from those without revealed the SOD1 mutants and 37A to have abruptly altered oligomeric states with respect to the nonaggregating forms, regardless of whether cells had inclusions or not, whereas 72Q was almost exclusively monomeric until inclusions formed. We propose that mutations leading to JUNQ inclusions induce a constitutively "misfolded" state exposing hydrophobic side chains that attract and ultimately overextend protein quality capacity, which leads to aggregation into JUNQ inclusions. Poly(Q) is not misfolded in this same sense due to universal polar side chains, but is highly prone to forming amyloid fibrils that we propose invoke a different engagement mechanism with quality control.
Assuntos
Peptídeos/química , Dobramento de Proteína , Superóxido Dismutase/química , Amiloide/química , Humanos , Corpos de Inclusão/química , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Peptídeos/genética , Superóxido Dismutase/genética , Superóxido Dismutase-1RESUMO
We applied pulse-shape analysis (PulSA) to monitor protein localization changes in mammalian cells by flow cytometry. PulSA enabled high-throughput tracking of protein aggregation, translocation from the cytoplasm to the nucleus and trafficking from the plasma membrane to the Golgi as well as stress-granule formation. Combining PulSA with tetracysteine-based oligomer sensors in a cell model of Huntington's disease enabled further separation of cells enriched with monomers, oligomers and inclusion bodies.
Assuntos
Citometria de Fluxo/métodos , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Complexo de Golgi/metabolismo , Humanos , Proteína Huntingtina , Corpos de Inclusão/metabolismo , Transporte ProteicoRESUMO
Our capacity for tracking how misfolded proteins aggregate inside a cell and how different aggregation states impact cell biology remains enigmatic. To address this, we built a new toolkit that enabled the high throughput tracking of individual cells enriched with polyglutamine-expanded Htt exon 1 (Httex1) monomers, oligomers, and inclusions using biosensors of aggregation state and flow cytometry pulse shape analysis. Supplemented with gel filtration chromatography and fluorescence-adapted sedimentation velocity analysis of cell lysates, we collated a multidimensional view of Httex1 aggregation in cells with respect to time, polyglutamine length, expression levels, cell survival, and overexpression of protein quality control chaperones hsp40 (DNAJB1) and hsp70 (HSPA1A). Cell death rates trended higher for Neuro2a cells containing Httex1 in inclusions than with Httex1 dispersed through the cytosol at time points of expression over 2 days. hsp40 stabilized monomers and suppressed inclusion formation but did not otherwise change Httex1 toxicity. hsp70, however, had no major effect on aggregation of Httex1 but increased the survival rate of cells with inclusions. hsp40 and hsp70 also increased levels of a second bicistronic reporter of Httex1 expression, mKate2, and increased total numbers of cells in culture, suggesting these chaperones partly rectify Httex1-induced deficiencies in quality control and growth rates. Collectively, these data suggest that Httex1 overstretches the protein quality control resources and that the defects can be partly rescued by overexpression of hsp40 and hsp70. Importantly, these effects occurred in a pronounced manner for soluble Httex1, which points to Httex1 aggregation occurring subsequently to more acute impacts on the cell.
Assuntos
Amiloide/metabolismo , Éxons , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Amiloide/genética , Animais , Morte Celular , Linhagem Celular , Sobrevivência Celular , Proteínas de Choque Térmico HSP40/agonistas , Proteínas de Choque Térmico HSP70/genética , Humanos , Proteína Huntingtina , Camundongos , Proteínas do Tecido Nervoso/agonistasRESUMO
Dematin (band 4.9) is an F-actin binding and bundling protein best known for its role within red blood cells, where it both stabilizes as well as attaches the spectrin/actin cytoskeleton to the erythrocytic membrane. Here, we investigate the structural consequences of phosphorylating serine 381, a covalent modification that turns off F-actin bundling activity. In contrast to the canonical doctrine, in which phosphorylation of an intrinsically disordered region/protein confers affinity for another domain/protein, we found the converse to be true of dematin: phosphorylation of the well folded C-terminal villin-type headpiece confers affinity for its intrinsically disordered N-terminal core domain. We employed analytical ultracentrifugation to demonstrate that dematin is monomeric, in contrast to the prevailing view that it is trimeric. Next, using a series of truncation mutants, we verified that dematin has two F-actin binding sites, one in the core domain and the other in the headpiece domain. Although the phosphorylation-mimicking mutant, S381E, was incapable of bundling microfilaments, it retains the ability to bind F-actin. We found that a phosphorylation-mimicking mutant, S381E, eliminated the ability to bundle, but not bind F-actin filaments. Lastly, we show that the S381E point mutant caused the headpiece domain to associate with the core domain, leading us to the mechanism for cAMP-dependent kinase control of dematin's F-actin bundling activity: when unphosphorylated, dematin's two F-actin binding domains move independent of one another permitting them to bind different F-actin filaments. Phosphorylation causes these two domains to associate, forming a compact structure, and sterically eliminating one of these F-actin binding sites.