Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 568, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886651

RESUMO

BACKGROUND: Wheat grain development in the first few days after pollination determines the number of endosperm cells that influence grain yield potential and is susceptible to various environmental conditions, including high night temperatures (HNTs). Flag leaves and seed-associated bracts (glumes, awn, palea, and lemma) provide nutrients to the developing seed. However, the specific metabolic roles of these tissues are uncertain, especially their dynamics at different developmental stages and the time in a day. Tissue- and time-dependent metabolite profiling may hint at the metabolic roles of tissues and the mechanisms of how HNTs affect daytime metabolic status in early grain development. RESULTS: The metabolite profiles of flag leaf, bract, seed (embryo and endosperm), and entire spike were analyzed at 12:00 (day) and 23:00 (night) on 2, 4, and 6 days after fertilization under control and HNT conditions. The metabolite levels in flag leaves and bracts showed day/night oscillations, while their behaviors were distinct between the tissues. Some metabolites, such as sucrose, cellobiose, and succinic acid, showed contrasting oscillations in the two photosynthetic tissues. In contrast, seed metabolite levels differed due to the days after fertilization rather than the time in a day. The seed metabolite profile altered earlier in the HNT than in the control condition, likely associated with accelerated grain development caused by HNT. HNT also disrupted the day/night oscillation of sugar accumulation in flag leaves and bracts. CONCLUSIONS: These results highlight distinct metabolic roles of flag leaves and bracts during wheat early seed development. The seed metabolite levels are related to the developmental stages. The early metabolic events in the seeds and the disruption of the day/night metabolic cycle in photosynthetic tissues may partly explain the adverse effects of HNT on grain yield.


Assuntos
Folhas de Planta , Sementes , Triticum , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Metaboloma , Temperatura , Fotossíntese , Fatores de Tempo
2.
J Integr Plant Biol ; 58(3): 266-79, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26593310

RESUMO

Maize (Zea mays) root system architecture (RSA) mediates the key functions of plant anchorage and acquisition of nutrients and water. In this study, a set of 204 recombinant inbred lines (RILs) was derived from the widely adapted Chinese hybrid ZD958(Zheng58 × Chang7-2), genotyped by sequencing (GBS) and evaluated as seedlings for 24 RSA related traits divided into primary, seminal and total root classes. Significant differences between the means of the parental phenotypes were detected for 18 traits, and extensive transgressive segregation in the RIL population was observed for all traits. Moderate to strong relationships among the traits were discovered. A total of 62 quantitative trait loci (QTL) were identified that individually explained from 1.6% to 11.6% (total root dry weight/total seedling shoot dry weight) of the phenotypic variation. Eighteen, 24 and 20 QTL were identified for primary, seminal and total root classes of traits, respectively. We found hotspots of 5, 3, 4 and 12 QTL in maize chromosome bins 2.06, 3.02-03, 9.02-04, and 9.05-06, respectively, implicating the presence of root gene clusters or pleiotropic effects. These results characterized the phenotypic variation and genetic architecture of seedling RSA in a population derived from a successful maize hybrid.


Assuntos
Endogamia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Característica Quantitativa Herdável , Recombinação Genética/genética , Plântula/genética , Zea mays/genética , Marcadores Genéticos , Hidroponia , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Plântula/crescimento & desenvolvimento
3.
Springerplus ; 4: 424, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26290803

RESUMO

The mature root system is a vital plant organ, which is critical to plant performance. Commercial maize (Zea mays L.) breeding has resulted in a steady increase in plant performance over time, along with noticeable changes in above ground vegetative traits, but the corresponding changes in the root system are not presently known. In this study, roughly 2500 core root systems from field trials of a set of 10 diverse elite inbreds formerly protected by Plant Variety Protection plus B73 and Mo17 and the 66 diallel intercrosses among them were evaluated for root traits using high throughput image-based phenotyping. Overall root architecture was modeled by root angle (RA) and stem diameter (SD), while root complexity, the amount of root branching, was quantified using fractal analysis to obtain values for fractal dimension (FD) and fractal abundance (FA). For each trait, per se line effects were highly significant and the most important contributor to trait performance. Mid-parent heterosis and specific combining ability was also highly significant for FD, FA, and RA, while none of the traits showed significant general combining ability. The interaction between the environment and the additive line effect was also significant for all traits. Within the inbred and hybrid generations, FD and FA were highly correlated (rp ≥ 0.74), SD was moderately correlated to FD and FA (0.69 ≥ rp ≥ 0.48), while the correlation between RA and other traits was low (0.13 ≥ rp ≥ -0.40). Inbreds with contrasting effects on complexity and architecture traits were observed, suggesting that root complexity and architecture traits are inherited independently. A more comprehensive understanding of the maize root system and the way it interacts with the environment will be useful for defining adaptation to nutrient acquisition and tolerance to stress from drought and high plant densities, critical factors in the yield gains of modern hybrids.

4.
Birth Defects Res C Embryo Today ; 75(1): 58-71, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15838920

RESUMO

Experimental studies during the last decade have revealed a number of signaling pathways that are critical for the development and maintenance of the intestinal epithelium and that demonstrate the molecular basis for a variety of diseases. The Notch-Delta, Wnt, Hedge Hog, TGF-beta, and other signaling pathways have been shown to form and steadily maintain the crypt-villus system, generating the proper quantities of highly-specialized cells, and ultimately defining the architectural shape of the system. Based on the characterized phenotypes and functional defects of mice resulting from various targeted knockouts, and overexpression and misexpressions of genes, a picture is emerging of the sequence of gene expression events from within the epithelium, and in the underlying mesenchyme that contribute to the regulation of cell differentiation and proliferation. This review focuses on the contributions of multiple signaling pathways to intestinal epithelial proliferation, differentiation, and structural organization, as well as the possible opportunities for cross-talk between pathways. The Notch pathway's potential ability to maintain and regulate the intestinal epithelial stem cell is discussed, in addition to its role as the primary mediator of lineage specification. Recent research that has shed light on the function of Wnt signaling and epithelial-mesenchymal cross-talk during embryonic and postnatal development is examined, along with data on the interplay of heparan sulfate proteoglycans in the signaling process.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mucosa Intestinal/embriologia , Intestino Delgado/embriologia , Transdução de Sinais/genética , Animais , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/metabolismo , Intestino Delgado/crescimento & desenvolvimento , Intestino Delgado/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA