Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 580(7802): 205-209, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269353

RESUMO

Silicon crystallized in the usual cubic (diamond) lattice structure has dominated the electronics industry for more than half a century. However, cubic silicon (Si), germanium (Ge) and SiGe alloys are all indirect-bandgap semiconductors that cannot emit light efficiently. The goal1 of achieving efficient light emission from group-IV materials in silicon technology has been elusive for decades2-6. Here we demonstrate efficient light emission from direct-bandgap hexagonal Ge and SiGe alloys. We measure a sub-nanosecond, temperature-insensitive radiative recombination lifetime and observe an emission yield similar to that of direct-bandgap group-III-V semiconductors. Moreover, we demonstrate that, by controlling the composition of the hexagonal SiGe alloy, the emission wavelength can be continuously tuned over a broad range, while preserving the direct bandgap. Our experimental findings are in excellent quantitative agreement with ab initio theory. Hexagonal SiGe embodies an ideal material system in which to combine electronic and optoelectronic functionalities on a single chip, opening the way towards integrated device concepts and information-processing technologies.

2.
Nano Lett ; 21(8): 3619-3625, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33843244

RESUMO

Recently synthesized hexagonal group IV materials are a promising platform to realize efficient light emission that is closely integrated with electronics. A high crystal quality is essential to assess the intrinsic electronic and optical properties of these materials unaffected by structural defects. Here, we identify a previously unknown partial planar defect in materials with a type I3 basal stacking fault and investigate its structural and electronic properties. Electron microscopy and atomistic modeling are used to reconstruct and visualize this stacking fault and its terminating dislocations in the crystal. From band structure calculations coupled to photoluminescence measurements, we conclude that the I3 defect does not create states within the hex-Ge and hex-Si band gap. Therefore, the defect is not detrimental to the optoelectronic properties of the hex-SiGe materials family. Finally, highlighting the properties of this defect can be of great interest to the community of hex-III-Ns, where this defect is also present.

3.
Nano Lett ; 20(4): 2703-2709, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32091910

RESUMO

According to Fourier's law, a temperature difference across a material results in a linear temperature profile and a thermal conductance that decreases inversely proportional to the system length. These are the hallmarks of diffusive heat flow. Here, we report heat flow in ultrathin (25 nm) GaP nanowires in the absence of a temperature gradient within the wire and find that the heat conductance is independent of wire length. These observations deviate from Fourier's law and are direct proof of ballistic heat flow, persisting for wire lengths up to at least 15 µm at room temperature. When doubling the wire diameter, a remarkably sudden transition to diffusive heat flow is observed. The ballistic heat flow in the ultrathin wires can be modeled within Landauer's formalism by ballistic phonons with an extraordinarily long mean free path.

4.
Nanotechnology ; 30(29): 295602, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30840942

RESUMO

We demonstrate the merits of an unexplored precursor, tetrasilane (Si4H10), as compared to disilane (Si2H6) for the growth of defect-free, epitaxial hexagonal silicon (Si). We investigate the growth kinetics of hexagonal Si shells epitaxially around defect-free wurtzite gallium phosphide (GaP) nanowires. Two temperature regimes are identified, representing two different surface reaction mechanisms for both types of precursors. Growth in the low temperature regime (415 °C-600 °C) is rate limited by interaction between the Si surface and the adsorbates, and in the high temperature regime (600 °C-735 °C) by chemisorption. The activation energy of the Si shell growth is 2.4 ± 0.2 eV for Si2H6 and 1.5 ± 0.1 eV for Si4H10 in the low temperature regime. We observe inverse tapering of the Si shells and explain this phenomenon by a basic diffusion model where the substrate acts as a particle sink. Most importantly, we show that, by using Si4H10 as a precursor instead of Si2H6, non-tapered Si shells can be grown with at least 50 times higher growth rate below 460 °C. The lower growth temperature may help to reduce the incorporation of impurities resulting from the growth of GaP.

5.
Phys Chem Chem Phys ; 20(20): 14242-14250, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29761813

RESUMO

III-V semiconductors such as InP are highly efficient light absorbers for photoelectrochemical (PEC) water splitting devices. Yet, their cathodic stability is limited due to photocorrosion and the measured photocurrents do not necessarily originate from H2 evolution only. We evaluated the PEC stability and activation of model p-InP(100) photocathodes upon photoelectrochemical passivation (i.e. repeated surface oxidation/reduction). The electrode was subjected to a sequence of linear potential scans with or without intermittent passivation steps (repeated passivation and continuous reduction, respectively). The evolution of H2 and PH3 gases was monitored by online electrochemical mass spectrometry (OLEMS) and the Faradaic efficiencies of these processes were determined. Repeated passivation led to an increase of the photocurrent in 0.5 M H2SO4, while continuous reduction did not affect the photocurrent of p-InP(100). Neither H2 nor PH3 formation increased to the same extent as the photocurrent during the repeated passivation treatment. Surface analysis of the spent electrodes revealed substantial roughening of the electrode surface by repeated passivation, while continuous reduction left the surface unaltered. On the other hand, photocathodic conditioning performed in 0.5 M HCl led to the expected correlation between photocurrent increase and H2 formation. Ultimately, the H2 evolution rates of the photoelectrodes in H2SO4 and HCl are comparable. The much higher photocurrent in H2SO4 is due to competing side-reactions. The results emphasize the need for a detailed evaluation of the Faradaic efficiencies of all the involved processes using a chemical-specific technique like OLEMS. Photo-OLEMS can be beneficial in the study of photoelectrochemical reactions enabling the instantaneous detection of small amounts of reaction by-products.

6.
Nano Lett ; 16(5): 3071-7, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27045232

RESUMO

Semiconductor nanowires are nanoscale structures holding promise in many fields such as optoelectronics, quantum computing, and thermoelectrics. Nanowires are usually grown vertically on (111)-oriented substrates, while (100) is the standard in semiconductor technology. The ability to grow and to control impurity doping of ⟨100⟩ nanowires is crucial for integration. Here, we discuss doping of single-crystalline ⟨100⟩ nanowires, and the structural and optoelectronic properties of p-n junctions based on ⟨100⟩ InP nanowires. We describe a novel approach to achieve low resistance electrical contacts to nanowires via a gradual interface based on p-doped InAsP. As a first demonstration in optoelectronic devices, we realize a single nanowire light emitting diode in a ⟨100⟩-oriented InP nanowire p-n junction. To obtain high vertical yield, which is necessary for future applications, we investigate the effect of the introduction of dopants on the nanowire growth.

7.
Nanotechnology ; 27(45): 454003, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27727149

RESUMO

Nanowire based solar cells have attracted great attention due to their potential for high efficiency and low device cost. Photovoltaic devices based on InP nanowires now have characteristics comparable to InP bulk solar cells. A detailed and direct correlation of the influence of growth conditions on performance is necessary to improve efficiency further. We explored the effects of the growth temperature, and of the addition of HCl during growth, on the efficiency of nanowire array based solar cell devices. By increasing HCl, the saturation dark current was reduced, and thereby the nanowire solar cell efficiency was enhanced from less than 1% to 7.6% under AM 1.5 illumination at 1 sun. At the same time, we observed that the solar cell efficiency decreased by increasing the tri-methyl-indium content, strongly suggesting that these effects are carbon related.

8.
Nano Lett ; 15(7): 4557-63, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26043200

RESUMO

Lighting applications require directional and polarization control of the emitted light, which is currently achieved by bulky optical components such as lenses, parabolic mirrors, and polarizers. Ideally, this control would be achieved without any external optics, but at the nanoscale, during the generation of light. Semiconductor nanowires are promising candidates for lighting devices due to their efficient light outcoupling and synthesis flexibility. In this work, we demonstrate a precise control of both the directionality and the polarization of the nanowire array emission by changing the nanowire diameter. We change the angular emission pattern from a large-angle doughnut shape to a narrow-angle beaming along the nanowire axis. In addition, we tune the polarization from unpolarized to either p- or s-polarized. Both the far-field emission pattern and its polarization are controlled by the number and type of guided or leaky modes supported by the nanowire, which are determined by the nanowire diameter.

9.
Nano Lett ; 14(7): 3715-9, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24875657

RESUMO

Semiconductor nanowire arrays are expected to be advantageous for photoelectrochemical energy conversion due to their reduced materials consumption. In addition, with the nanowire geometry the length scales for light absorption and carrier separation are decoupled, which should suppress bulk recombination. Here, we use vertically aligned p-type InP nanowire arrays, coated with noble-metal-free MoS3 nanoparticles, as the cathode for photoelectrochemical hydrogen production from water. We demonstrate a photocathode efficiency of 6.4% under Air Mass 1.5G illumination with only 3% of the surface area covered by nanowires.

10.
Nano Lett ; 13(9): 4113-7, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23898896

RESUMO

We demonstrate an efficiency enhancement of an InP nanowire (NW) axial p-n junction solar cell by cleaning the NW surface. NW arrays were grown with in situ HCl etching on an InP substrate patterned by nanoimprint lithography, and the NWs surfaces were cleaned after growth by piranha etching. We find that the postgrowth piranha etching is critical for obtaining a good solar cell performance. With this procedure, a high diode rectification factor of 10(7) is obtained at ±1 V. The resulting NW solar cell exhibits an open-circuit voltage (Voc) of 0.73 V, a short-circuit current density (Jsc) of 21 mA/cm(2), and a fill factor (FF) of 0.73 at 1 sun. This yields a power conversion efficiency of up to 11.1% at 1 sun and 10.3% at 12 suns.

11.
ACS Appl Nano Mater ; 7(2): 2343-2351, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38298254

RESUMO

Monolithic integration of silicon-based electronics and photonics could open the door toward many opportunities including on-chip optical data communication and large-scale application of light-based sensing devices in healthcare and automotive; by some, it is considered the Holy Grail of silicon photonics. The monolithic integration is, however, severely hampered by the inability of Si to efficiently emit light. Recently, important progress has been made by the demonstration of efficient light emission from direct-bandgap hexagonal SiGe (hex-SiGe) alloy nanowires. For this promising material, realized by employing a nanowire structure, many challenges and open questions remain before a large-scale application can be realized. Considering that for other direct-bandgap materials like GaAs, surface recombination can be a true bottleneck, one of the open questions is the importance of surface recombination for the photoluminescence efficiency of this new material. In this work, temperature-dependent photoluminescence measurements were performed on both hex-Ge and hex-SiGe nanowires with and without surface passivation schemes that have been well documented and proven effective on cubic silicon and germanium to elucidate whether and to what extent the internal quantum efficiency (IQE) of the wires can be improved. Additionally, time-resolved photoluminescence (TRPL) measurements were performed on unpassivated hex-SiGe nanowires as a function of their diameter. The dependence of the surface recombination on the SiGe composition could, however, not be yet addressed given the sample-to-sample variations of the state-of-the-art hex-SiGe nanowires. With the aforementioned experiments, we demonstrate that at room temperature, under high excitation conditions (a few kW cm-2), the hex-(Si)Ge surface is most likely not a bottleneck for efficient radiative emission under relatively high excitation conditions. This is an important asset for future hex(Si)Ge optoelectronic devices, specifically for nanolasers.

12.
Nat Commun ; 15(1): 5252, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898007

RESUMO

Silicon is indisputably the most advanced material for scalable electronics, but it is a poor choice as a light source for photonic applications, due to its indirect band gap. The recently developed hexagonal Si1-xGex semiconductor features a direct bandgap at least for x > 0.65, and the realization of quantum heterostructures would unlock new opportunities for advanced optoelectronic devices based on the SiGe system. Here, we demonstrate the synthesis and characterization of direct bandgap quantum wells realized in the hexagonal Si1-xGex system. Photoluminescence experiments on hex-Ge/Si0.2Ge0.8 quantum wells demonstrate quantum confinement in the hex-Ge segment with type-I band alignment, showing light emission up to room temperature. Moreover, the tuning range of the quantum well emission energy can be extended using hexagonal Si1-xGex/Si1-yGey quantum wells with additional Si in the well. These experimental findings are supported with ab initio bandstructure calculations. A direct bandgap with type-I band alignment is pivotal for the development of novel low-dimensional light emitting devices based on hexagonal Si1-xGex alloys, which have been out of reach for this material system until now.

13.
Nanotechnology ; 24(11): 115705, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23455417

RESUMO

We report single crystal phase and non-tapered wurtzite (WZ) and zincblende twinning superlattice (ZB TSL) InP nanowires (NWs). The NWs are grown in a metalorganic vapor phase epitaxy (MOVPE) reactor using the vapor-liquid-solid (VLS) mechanism and in situ etching with HCl at a high growth temperature. Our stacking fault-free WZ and ZB TSL NWs allow access to the fundamental properties of both NW crystal structures, whose optical and electronic behaviors are often screened by polytypism or incorporated impurities. The WZ NWs show no acceptor-related emission, implying that the VLS-grown NW is almost free of impurities due to sidewall removal by HCl. They only emit light at the free exciton (1.491 eV) and the donor bound exciton transition (1.4855 eV). The ZB NWs exhibit a photoluminescence spectrum being unaffected by the twinning planes. Surprisingly, the acceptor-related emission in the ZB NWs can be almost completely removed by etching away the impurity-contaminated sidewall grown via a vapor-solid mechanism.

14.
ACS Nano ; 13(7): 8047-8054, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31282653

RESUMO

Highly oriented Ge0.81Sn0.19 nanowires have been synthesized by a low-temperature chemical vapor deposition growth technique. The nanostructures form by a self-seeded vapor-liquid-solid mechanism. In this process, liquid metallic Sn seeds enable the anisotropic crystal growth and act as a sole source of Sn for the formation of the metastable Ge1-xSnx semiconductor material. The strain relaxation for a lattice mismatch of ε = 2.94% between the Ge (111) substrate and the constant Ge0.81Sn0.19 composition of nanowires is confined to a transition zone of <100 nm. In contrast, Ge1-xSnx structures with diameters in the micrometer range show a 5-fold longer compositional gradient very similar to epitaxial thin-film growth. Effects of the Sn growth promoters' dimensions on the morphological and compositional evolution of Ge1-xSnx are described. The temperature- and laser power-dependent photoluminescence analyses verify the formation of a direct band gap material with emission in the mid-infrared region and values expected for unstrained Ge0.81Sn0.19 (e.g., band gap of 0.3 eV at room temperature). These materials  hold promise in applications such as thermal imaging and photodetection as well as building blocks for group IV-based mid- to near-IR photonics.

15.
Nat Nanotechnol ; 14(5): 473-479, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30833690

RESUMO

Superconducting nanowire single-photon detectors with peak efficiencies above 90% and unrivalled timing jitter (<30 ps) have emerged as a potent technology for quantum information and sensing applications. However, their high cost and cryogenic operation limit their widespread applicability. Here, we present an approach using tapered InP nanowire p-n junction arrays for high-efficiency, broadband and high-speed photodetection without the need for cryogenic cooling. The truncated conical nanowire shape enables a broadband, linear photoresponse in the ultraviolet to near-infrared range (~500 nm bandwidth) with external quantum efficiencies exceeding 85%. The devices exhibit a high gain beyond 105, such that a single photon per pulse can be distinguished from the dark noise, while simultaneously showing a fast pulse rise time (<1 ns) and excellent timing jitter (<20 ps). Such detectors open up new possibilities for applications in remote sensing, dose monitoring for cancer treatment, three-dimensional imaging and quantum communication.

16.
Nat Commun ; 9(1): 3248, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108222

RESUMO

Charge carrier-selective contacts transform a light-absorbing semiconductor into a photovoltaic device. Current record efficiency solar cells nearly all use advanced heterojunction contacts that simultaneously provide carrier selectivity and contact passivation. One remaining challenge with heterojunction contacts is the tradeoff between better carrier selectivity/contact passivation (thicker layers) and better carrier extraction (thinner layers). Here we demonstrate that the nanowire geometry can remove this tradeoff by utilizing a permanent local gate (molybdenum oxide surface layer) to control the carrier selectivity of an adjacent ohmic metal contact. We show an open-circuit voltage increase for single indium phosphide nanowire solar cells by up to 335 mV, ultimately reaching 835 mV, and a reduction in open-circuit voltage spread from 303 to 105 mV after application of the surface gate. Importantly, reference experiments show that the carriers are not extracted via the molybdenum oxide but the ohmic metal contacts at the wire ends.

17.
Nat Nanotechnol ; 11(12): 1071-1075, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27618257

RESUMO

Nanophotonic engineering shows great potential for photovoltaics: the record conversion efficiencies of nanowire solar cells are increasing rapidly and the record open-circuit voltages are becoming comparable to the records for planar equivalents. Furthermore, it has been suggested that certain nanophotonic effects can reduce costs and increase efficiencies with respect to planar solar cells. These effects are particularly pronounced in single-nanowire devices, where two out of the three dimensions are subwavelength. Single-nanowire devices thus provide an ideal platform to study how nanophotonics affects photovoltaics. However, for these devices the standard definition of power conversion efficiency no longer applies, because the nanowire can absorb light from an area much larger than its own size. Additionally, the thermodynamic limit on the photovoltage is unknown a priori and may be very different from that of a planar solar cell. This complicates the characterization and optimization of these devices. Here, we analyse an InP single-nanowire solar cell using intrinsic metrics to place its performance on an absolute thermodynamic scale and pinpoint performance loss mechanisms. To determine these metrics we have developed an integrating sphere microscopy set-up that enables simultaneous and spatially resolved quantitative absorption, internal quantum efficiency (IQE) and photoluminescence quantum yield (PLQY) measurements. For our record single-nanowire solar cell, we measure a photocurrent collection efficiency of >90% and an open-circuit voltage of 850 mV, which is 73% of the thermodynamic limit (1.16 V).

18.
ACS Nano ; 10(12): 11414-11419, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024324

RESUMO

Photovoltaic cells based on arrays of semiconductor nanowires promise efficiencies comparable or even better than their planar counterparts with much less material. One reason for the high efficiencies is their large absorption cross section, but until recently the photocurrent has been limited to less than 70% of the theoretical maximum. Here we enhance the absorption in indium phosphide (InP) nanowire solar cells by employing broadband forward scattering of self-aligned nanoparticles on top of the transparent top contact layer. This results in a nanowire solar cell with a photovoltaic conversion efficiency of 17.8% and a short-circuit current of 29.3 mA/cm2 under 1 sun illumination, which is the highest reported so far for nanowire solar cells and among the highest reported for III-V solar cells. We also measure the angle-dependent photocurrent, using time-reversed Fourier microscopy, and demonstrate a broadband and omnidirectional absorption enhancement for unpolarized light up to 60° with a wavelength average of 12% due to Mie scattering. These results unambiguously demonstrate the potential of semiconductor nanowires as nanostructures for the next generation of photovoltaic devices.

19.
Nat Commun ; 6: 7824, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26183949

RESUMO

Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA