RESUMO
Transcription factors (TFs) orchestrate the gene expression programs that define each cell's identity. The canonical TF accomplishes this with two domains, one that binds specific DNA sequences and the other that binds protein coactivators or corepressors. We find that at least half of TFs also bind RNA, doing so through a previously unrecognized domain with sequence and functional features analogous to the arginine-rich motif of the HIV transcriptional activator Tat. RNA binding contributes to TF function by promoting the dynamic association between DNA, RNA, and TF on chromatin. TF-RNA interactions are a conserved feature important for vertebrate development and disrupted in disease. We propose that the ability to bind DNA, RNA, and protein is a general property of many TFs and is fundamental to their gene regulatory function.
Assuntos
RNA , Fatores de Transcrição , Fatores de Transcrição/metabolismo , RNA/metabolismo , Sítios de Ligação , Ligação Proteica , DNA/genéticaRESUMO
Transcription factors (TF), such as Myc, are proteins implicated in disease pathogenesis, with dysregulation of Myc expression in 50% of all human cancers. Still, targeting Myc remains a challenge due to the lack of small molecule binding pockets in the tertiary structure. Here, we report synthetic covalently linked TF mimetics that inhibit oncogenic Myc-driven transcription by antagonistic binding of the target DNA-binding site. We combined automated flow peptide chemistry with palladium(II) oxidative addition complexes (OACs) to engineer covalent protein dimers derived from the DNA-binding domains of Myc, Max, and Omomyc TF analogs. Palladium-mediated cross-coupling of synthesized protein monomers resulted in milligram quantities of seven different covalent homo- and heterodimers. The covalent helical dimers were found to bind DNA and exhibited improved thermal stability. Cell-based studies revealed the Max-Max covalent dimer is cell-penetrating and interfered with Myc-dependent gene transcription resulting in reduced cancer cell proliferation (EC50 of 6 µM in HeLa). RNA sequencing and gene analysis of extracted RNA from treated cancer cells confirmed that the covalent Max-Max homodimer interferes with Myc-dependent transcription. Flow chemistry, combined with palladium(II) OACs, has enabled a practical strategy to generate new bioactive compounds to inhibit tumor cell proliferation.
Assuntos
Indicadores e Reagentes/química , Paládio/química , Engenharia de Proteínas , Proteínas Proto-Oncogênicas c-myc/síntese química , Proliferação de Células/efeitos dos fármacos , DNA/química , Células HeLa , Humanos , Indicadores e Reagentes/farmacologia , Modelos Moleculares , Paládio/farmacologia , Multimerização Proteica , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genéticaRESUMO
The nucleus contains diverse phase-separated condensates that compartmentalize and concentrate biomolecules with distinct physicochemical properties. Here, we investigated whether condensates concentrate small-molecule cancer therapeutics such that their pharmacodynamic properties are altered. We found that antineoplastic drugs become concentrated in specific protein condensates in vitro and that this occurs through physicochemical properties independent of the drug target. This behavior was also observed in tumor cells, where drug partitioning influenced drug activity. Altering the properties of the condensate was found to affect the concentration and activity of drugs. These results suggest that selective partitioning and concentration of small molecules within condensates contributes to drug pharmacodynamics and that further understanding of this phenomenon may facilitate advances in disease therapy.