Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 873
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(1): e23635, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229313

RESUMO

Arsenic is a toxic metalloid found in the environment in different organic and inorganic forms. Molecular mechanisms implicated in arsenic hepatotoxicity are complex but include oxidative stress, apoptosis, and autophagy. The current study focused on the potential protective capacity of melatonin against arsenic-induced hepatotoxicity. Thirty-six male Wistar rats were allocated into control, arsenic (15 mg/kg; orally), arsenic (15 mg/kg) plus melatonin (10, 20, and 30 mg/kg; intraperitoneally), and melatonin alone (30 mg/kg) groups for 28 days. After the treatment period, the serum sample was separated to measure liver enzymes (AST and ALT). The liver tissue was removed and then histological alterations, oxidative stress markers, antioxidant capacity, the levels of Nrf2 and HO-1, apoptosis (Bcl-2, survivin, Mcl1, Bax, and caspase-3), and autophagy (Sirt1, Beclin-1, and LC3 II/I ratio) proteins, as well as the expression level of miR-34a, were evaluated on this tissue. Arsenic exposure resulted in the enhancement of serum AST, ALT, and substantial histological damage in the liver. Increased levels of malondialdehyde, a lipid peroxidation marker, and decreased levels of physiological antioxidants including glutathione, superoxide dismutase, and catalase were indicators of arsenic-induced oxidative damage. The levels of Nrf2, HO-1, and antiapoptotic proteins diminished, while proapoptotic and autophagy proteins were elevated in the arsenic group concomitant with a low level of hepatic miR-34a. The co-treatment of melatonin and arsenic reversed the changes caused by arsenic. These findings showed that melatonin reduced the hepatic damage induced by arsenic due to its antioxidant and antiapoptotic properties as well as its regulatory effect on the miR-34a/Sirt1/autophagy pathway.


Assuntos
Arsênio , Doença Hepática Induzida por Substâncias e Drogas , Melatonina , MicroRNAs , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Melatonina/farmacologia , Arsênio/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuína 1/metabolismo , Ratos Wistar , Fígado/metabolismo , Estresse Oxidativo , Apoptose , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Autofagia
2.
J Biochem Mol Toxicol ; 38(1): e23611, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38084605

RESUMO

BACKGROUND: Nanotechnology and its application to manipulate herbal compounds to design new neuroprotective agents to manage neurotoxicity has recently increased. Cur-ZnO conjugated nanoparticles were synthesized and used in an experimental model of ketamine-induced neurotoxicity. METHODS: Cur-ZnO conjugated nanoparticles were chemically characterized, and the average crystalline size was determined. Forty-nine adult mice were divided into seven groups of seven animals each. Normal saline was given to control mice (group 1). Ketamine (25 mg/kg) was given to a second group. A third group of mice was given ketamine (25 mg/kg) in combination with curcumin (40 mg/kg), while mice in groups 4, 5, and 6 received ketamine (25 mg/kg) plus Cur-ZnO nanoparticles (10, 20, and 40 mg/kg). Group 7 received only ZnO (5 mg/kg). All doses were ip for 14 days. Hippocampal mitochondrial quadruple complex enzymes, oxidative stress, inflammation, and apoptotic characteristics were assessed. RESULTS: Cur-ZnO nanoparticles and curcumin decreased lipid peroxidation, GSSG content, IL-1ß, TNF-α, and Bax levels while increasing GSH and antioxidant enzymes like GPx, GR, and SOD while increasing Bcl-2 level and mitochondrial quadruple complex enzymes in ketamine treatment groups. CONCLUSION: The neuroprotective properties of Cur-ZnO nanoparticles were efficient in preventing ketamine-induced neurotoxicity in the mouse brain. The nanoparticle form of curcumin (Cur-ZnO) required lower doses to produce neuroprotective effects against ketamine-induced toxicity than conventional curcumin.


Assuntos
Curcumina , Ketamina , Nanopartículas , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Óxido de Zinco , Camundongos , Animais , Curcumina/farmacologia , Neuroproteção , Óxido de Zinco/toxicidade , Ketamina/toxicidade , Estresse Oxidativo , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle
3.
Nature ; 554(7691): 216-218, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29420479

RESUMO

The atomic nucleus and its electrons are often thought of as independent systems that are held together in the atom by their mutual attraction. Their interaction, however, leads to other important effects, such as providing an additional decay mode for excited nuclear states, whereby the nucleus releases energy by ejecting an atomic electron instead of by emitting a γ-ray. This 'internal conversion' has been known for about a hundred years and can be used to study nuclei and their interaction with their electrons. In the inverse process-nuclear excitation by electron capture (NEEC)-a free electron is captured into an atomic vacancy and can excite the nucleus to a higher-energy state, provided that the kinetic energy of the free electron plus the magnitude of its binding energy once captured matches the nuclear energy difference between the two states. NEEC was predicted in 1976 and has not hitherto been observed. Here we report evidence of NEEC in molybdenum-93 and determine the probability and cross-section for the process in a beam-based experimental scenario. Our results provide a standard for the assessment of theoretical models relevant to NEEC, which predict cross-sections that span many orders of magnitude. The greatest practical effect of the NEEC process may be on the survival of nuclei in stellar environments, in which it could excite isomers (that is, long-lived nuclear states) to shorter-lived states. Such excitations may reduce the abundance of the isotope after its production. This is an example of 'isomer depletion', which has been investigated previously through other reactions, but is used here to obtain evidence for NEEC.

4.
Arch Toxicol ; 98(4): 1237-1240, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367038

RESUMO

The present paper provides a new perspective of previously published findings by Siwak (Food Chem 141:1227-1241, 2013) which showed that 15 structurally diverse flavonoids reduced toxicity (i.e., enhanced cell viability) from hypochlorite using the MTT assay within a pre-conditioning experimental protocol, with each agent showing a similar biphasic concentration response relationship. We use this Commentary to point out that each of the concentration response relationships are consistent with the hormetic dose response. The paper of Siwak (Food Chem 141:1227-1241, 2013) is unique in that it provides a comparison of a relatively large number of agents using the identical experimental protocol.


Assuntos
Flavonoides , Hormese , Flavonoides/toxicidade , Sobrevivência Celular , Relação Dose-Resposta a Droga
5.
Int J Toxicol ; 43(1): 46-62, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37903286

RESUMO

An emerging alternative to conventional animal models in toxicology research is the zebrafish. Their accelerated development, regenerative capacity, transparent physical appearance, ability to be genetically manipulated, and ease of housing and care make them feasible and efficient experimental models. Nonetheless, their most esteemed asset is their 70% (+) genetic similarity with the human genome, which allows the model to be used in a variety of clinically relevant studies. With these attributes, we propose the zebrafish is an excellent model for analyzing cognitive and neuromuscular responses when exposed to toxicants. Neurocognition can be readily analyzed using visual discrimination, memory and learning, and social behavior testing. Neuromuscular function can be analyzed using techniques such as the startle response, assessment of activity level, and evaluation of critical swimming speed. Furthermore, selectively mutated zebrafish is another novel application of this species in behavioral and pharmacological studies, which can be exploited in toxicological studies. There is a critical need in biomedical research to discover ethical and cost-effective methods to develop new products, including drugs. Through mutagenesis, zebrafish models have become key in meeting this need by advancing the field in numerous areas of biomedical research.


Assuntos
Comportamento Animal , Peixe-Zebra , Animais , Humanos , Cognição/fisiologia
6.
Int J Environ Health Res ; 34(1): 611-624, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36682065

RESUMO

Paraquat (PQ) is a toxic herbicide to humans. Once absorbed, it accumulates in the lungs. PQ has been well documented that the generation of reactive oxygen species (ROS) is the main mechanism of its toxicity. Oxidative damage of PQ in lungs is represented as generation of cytotoxic and fibrotic mediators, interruption of epithelial and endothelial barriers, and inflammatory cell infiltration. No effective treatment for PQ toxicity is currently available. Several studies have shown that natural compounds (NCs) have the potential to alleviate PQ-induced pulmonary toxicity, due to their antioxidant and anti-inflammatory effects. NCs function as protective agents through stimulation of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathways. Elevation of Nrf2 levels leads to the expression of its downstream enzymes such as SOD, CAT, and HO-1. The hypothesized role of the Nrf2/ARE signaling pathway as the protective mechanism of NCs against PQ-induced pulmonary toxicity is reviewed.


Assuntos
Fator 2 Relacionado a NF-E2 , Paraquat , Humanos , Paraquat/toxicidade , Paraquat/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Elementos de Resposta Antioxidante , Pulmão , Estresse Oxidativo , Transdução de Sinais
7.
Mol Biol Rep ; 50(9): 7393-7404, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453963

RESUMO

BACKGROUND: Tramadol (TRA) is an analgesic prescribed for treating mild to moderate pains, the abuse of which has increased in recent years. Chronic tramadol consumption produces neurotoxicity, although the mechanisms are unclear. The present study investigated the involvement of apoptosis and autophagy signaling pathways and the mitochondrial system in TRA-induced neurotoxicity. MATERIALS AND METHODS: Sixty adult male Wistar rats were divided into five groups that received standard saline or TRA in doses of 25, 50, 75, 100, or 150 mg/kg intraperitoneally for 21 days. On the 22nd day, the Open Field Test (OFT) was conducted. Jun N-Terminal Kinase (JNK), B-cell lymphoma-2 (Bcl-2), Beclin1, and Bcl-2-like protein 4 (Bax) proteins and tumor necrosis factor α (TNF-α) and interleukin 1ß (IL-1ß) were measured in rat hippocampal tissue. RESULTS: TRA at doses 75, 100, and 150 mg/kg caused locomotor dysfunction in rats and increased total and phosphorylated forms of JNK and Beclin-1, Bax, and Caspase-3. TRA at the three higher doses also increased the phosphorylated (inactive) form of Bcl-2 level while decreasing the unphosphorylated (active) form of Bcl-2. Similarly, the protein levels of TNF-α and IL-1ß were increased dose-dependently. The mitochondrial respiratory chain enzymes were reduced at the three higher doses of TRA. CONCLUSION: TRA activated apoptosis and autophagy via modulation of TNF-α or IL-1ß/JNK/Bcl-2/Beclin1 and Bcl-2/Bax signaling pathways and dysfunction of mitochondrial respiratory chain enzymes.


Assuntos
Tramadol , Ratos , Masculino , Animais , Ratos Wistar , Tramadol/farmacologia , Tramadol/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose , Autofagia , Hipocampo/metabolismo
8.
Biometals ; 36(4): 799-813, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36564665

RESUMO

Arsenic (As) is a toxic metalloid that is widely distributed in the earth's crust. People are continuously exposed to this toxicant in their food and drinking water. Inorganic arsenic occurs in two oxidation states, arsenite 3+ (iAs3+) and arsenate 5+ (iAs5+). The most toxic form is its trivalent form which interferes with the electron transfer cycle and induces overproduction of reactive oxygen species, leading to depletion of the antioxidant defense system, as well as altering fatty acid levels and mitochondrial action. Since arsenic crosses the blood-brain barrier, it can damage cells in different regions of the brain, causing neurological disorders through the induction of oxidative stress, inflammation, DNA damage, and cell death. Hydroxytyrosol, taurine, alpha-lipoic acid, ellagic acid, and thymoquinone have been shown to effectively alleviate arsenic-induced neurotoxicity. The protective effects are the result of the anti-oxidative and anti-inflammatory properties of the phytochemicals and in particular their anti-apoptotic function via the Nrf2 and PI3/Akt/SIRT1 signaling pathways.


Assuntos
Arsênio , Humanos , Arsênio/toxicidade , Apoptose , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia
9.
Exp Cell Res ; 419(1): 113304, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35931142

RESUMO

Sorting nexins (SNXs) are involved in sorting the protein cargo within the endolysosomal system. Recently, several studies have shown the role of SNXs in cardiovascular pathology. SNXs exert both physiologic and pathologic functions in the cardiovascular system by regulating protein sorting and trafficking, maintaining protein homeostasis, and participating in multiple signaling pathways. SNX deficiency results in blood pressure response to dopamine 5 receptor [D5R] stimulation. SNX knockout protected against atherosclerosis lesions by suppressing foam cell formation. Moreover, SNXs can act as endogenous anti-arrhythmic agents via maintenance of calcium homeostasis. Overexpression SNXs also can reduce cardiac fibrosis in atrial fibrillation. The SNX-STAT3 interaction in cardiac cells promoted heart failure. SNXs may have the potential to act as a pharmacological target against specific cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Endossomos , Humanos , Transporte Proteico , Nexinas de Classificação
10.
Environ Res ; 217: 114829, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410460

RESUMO

The present study investigated the effects of PCBs on the rat kidneys with attention given to the determination critical effect dose (CED) using the Benchmark dose (BMD) approach. Male albino Wistar rats (7 animals per group) were given by oral gavage Aroclor 1254 dissolved in corn oil at doses of 0.0, 0.5, 1, 2, 4, 8, or 16 mg/kg b.w./day for 28 days. The PCB nephrotoxicity was manifested by a dose-dependent changes in serum urea levels. The study has also revealed PCB-induced oxidative stress induction in kidneys. The observed nephrotoxic effects can be partly explained by oxidative damage of lipids and proteins in the kidneys due to observed reduced CuZnSOD activity and disturbances in antioxidant protection. Аll the renal oxidative stress parameters showed dependence on PCB oral doses as well as internal, measure kidney PCB levels. Calculated BMDL values were lower than estimated no observed adverse effect levels (NOAEL) based on the study, suggesting the importance of BMD approach use in future risk assessment.


Assuntos
Bifenilos Policlorados , Ratos , Animais , Masculino , Bifenilos Policlorados/toxicidade , Ratos Sprague-Dawley , Ratos Wistar , Rim , Modelos Animais
11.
Phytother Res ; 37(12): 5769-5786, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37748097

RESUMO

Although various therapeutic approaches are used to manage nonalcoholic fatty liver disease (NAFLD), the best approach to NAFLD management is unclear. NAFLD is a liver disorder associated with obesity, metabolic syndrome, and diabetes mellitus. NAFLD progression can lead to cirrhosis and end-stage liver disease. Hepatic kinase B1 (LKB1) is an upstream kinase of 5'-adenosine monophosphate-activated protein kinase (AMPK), a crucial regulator in hepatic lipid metabolism. Activation of LKB1/AMPK inhibits fatty acid synthesis, increases mitochondrial ß-oxidation, decreases the expression of genes encoding lipogenic enzymes, improves nonalcoholic steatohepatitis, and suppresses NAFLD progression. One potential opening for new and safe chemicals that can tackle the NAFLD pathogenesis through the LKB1-AMPK pathway includes natural bioactive compounds. Accordingly, we summarized in vitro and in vivo studies regarding the effect of natural bioactive compounds such as a few members of the polyphenols, terpenoids, alkaloids, and some natural extracts on NAFLD through the LKB1/AMPK signaling pathway. This manuscript may shed light on the way to finding a new therapeutic agent for NAFLD management.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fígado , Metabolismo dos Lipídeos , Transdução de Sinais
12.
Toxicol Mech Methods ; 33(3): 173-182, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35920262

RESUMO

The ever-expanding prevalence of adverse neurotoxic reactions of the brain in response to therapeutic and recreational drugs, dietary supplements, environmental hazards, cosmetic ingredients, a spectrum of herbals, health status, and environmental stressors continues to prompt the development of novel cell-based assays to better determine neurotoxic hazard. Neurotoxicants may cause direct and epigenetic damage to the nervous tissue and alter the chemistry, structure, or normal activity of the nervous system. In severe neurotoxicity due to exposure to physical or psychosocial toxicants, neurons are disrupted or killed, and a consistent pattern of clinical neural dysfunction appears. In utero exposure to neurotoxicants can lead to altered development of the nervous system [developmental neurotoxicity (DNT)]. Patients with certain disorders and certain genomic makeup may be particularly susceptible to neurotoxicants. Traditional cytotoxicity measurements, like cell death, are easy to measure, but insufficient at identifying current routine biomarkers of toxicity including functional impairment in cell communication, which often occurs before or even in the absence of cell death. The present paper examines some of the limitations of existing neurotoxicology in light of the increasing need to develop tools to meet the challenges of achieving greater sensitivity in detection and developing and standardizing methods for exploring the toxicologic risk of such neurotoxic entities as engineered nanomaterials and even variables associated with poverty.


Assuntos
Síndromes Neurotóxicas , Humanos , Síndromes Neurotóxicas/etiologia , Neurônios
13.
Toxicol Mech Methods ; 33(7): 607-623, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37051630

RESUMO

Tramadol (TRA) causes neurotoxicity whereas trimetazidine (TMZ) is neuroprotective. The potential involvement of the PI3K/Akt/mTOR signaling pathway in the neuroprotection of TMZ against TRA-induced neurotoxicity was evaluated. Seventy male Wistar rats were divided into groups. Groups 1 and 2 received saline or TRA (50 mg/kg). Groups 3, 4, and 5 received TRA (50 mg/kg) and TMZ (40, 80, or 160 mg/kg) for 14 days. Group 6 received TMZ (160 mg/kg). Hippocampal neurodegenerative, mitochondrial quadruple complex enzymes, phosphatidylinositol-3-kinases (PI3Ks)/protein kinase B levels, oxidative stress, inflammatory, apoptosis, autophagy, and histopathology were evaluated. TMZ decreased anxiety and depressive-like behavior induced by TRA. TMZ in tramadol-treated animals inhibited lipid peroxidation, GSSG, TNF-α, and IL-1ß while increasing GSH, SOD, GPx, GR, and mitochondrial quadruple complex enzymes in the hippocampus. TRA inhibited Glial fibrillary acidic protein expression and increased pyruvate dehydrogenase levels. TMZ reduced these changes. TRA decreased the level of JNK and increased Beclin-1 and Bax. TMZ decreased phosphorylated Bcl-2 while increasing the unphosphorylated form in tramadol-treated rats. TMZ activated phosphorylated PI3Ks, Akt, and mTOR proteins. TMZ inhibited tramadol-induced neurotoxicity by modulating the PI3K/Akt/mTOR signaling pathways and its downstream inflammatory, apoptosis, and autophagy-related cascades.


Assuntos
Fármacos Neuroprotetores , Síndromes Neurotóxicas , Tramadol , Trimetazidina , Masculino , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Trimetazidina/farmacologia , Tramadol/toxicidade , Neuroproteção , Ratos Wistar , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Apoptose , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Autofagia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
14.
J Biochem Mol Toxicol ; 36(1): e22946, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34747550

RESUMO

Doxorubicin (DOX) is a potent antitumor agent with a broad spectrum of activity; however, irreversible cardiotoxicity resulting from DOX treatment is a major issue that limits its therapeutic use. Sirtuins (SIRTs) play an essential role in several physiological and pathological processes including oxidative stress, apoptosis, and inflammation. It has been reported that SIRT1 and SIRT3 can act as a protective molecular against DOX-induced myocardial injury through targeting numerous signaling pathways. Several natural compounds (NCs), such as resveratrol, sesamin, and berberine, with antioxidative, anti-inflammation, and antiapoptotic effects were evaluated for their potential to suppress the cardiotoxicity induced by DOX via targeting SIRT1 and SIRT3. Numerous NCs exerted their therapeutic effects on DOX-mediated cardiac damage via targeting different signaling pathways, including SIRT1/LKB1/AMPK, SIRT1/PGC-1α, SIRT1/NLRP3, and SIRT3/FoxO. SIRT3 also ameliorates cardiotoxicity by enhancing mitochondrial fusion.


Assuntos
Berberina/uso terapêutico , Dioxóis/uso terapêutico , Doxorrubicina/efeitos adversos , Cardiopatias/enzimologia , Lignanas/uso terapêutico , Miocárdio/enzimologia , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/enzimologia , Doxorrubicina/farmacologia , Cardiopatias/induzido quimicamente , Cardiopatias/tratamento farmacológico , Humanos
16.
Clin Radiol ; 77(10): 784-793, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35850865

RESUMO

AIM: To report the first UK experience of cryoablation in desmoid fibromatosis (DF) with particular focus on technique, safety, and efficacy. MATERIALS AND METHODS: Patients were selected at multidisciplinary tumour board meetings at a specialist cancer hospital. Radiation dose, procedure duration, and number of cryoprobes were compared for small versus large tumours (>10 cm long axis). Response at magnetic resonance imaging (MRI) was evaluated using different criteria, and percentage agreement with clinical response as assessed in oncology clinic calculated. RESULTS: Thirteen procedures were performed in 10 patients (eight women, median age 51 years, IQR 42-69 years) between February 2019 and August 2021. Procedures for large tumours had higher radiation dose (2,012 ± 1,012 versus 1,076 ± 519 mGy·cm, p=0.048) used more cryoprobes (13 ± 7 versus 4 ± 2, p=0.009), and were more likely to have residual unablated tumour (38 ± 37% versus 7.5 ± 10%, p=0.045). Adverse events were minor apart from one transient radial nerve palsy. Eight of 10 patients had symptomatic benefit at clinical follow-up (median 353 days, IQR 86-796 days), and three started systemic therapy mean 393 days later. All patients who had complete ablation demonstrated symptomatic response, with no instances of repeat treatment, recurrence, or need for systemic therapy during the study period. All progression occurred outside ablation zones. CONCLUSION: Cryoablation for symptomatic DF is a reproducible technique with low, transient toxicity, where one or two treatments can achieve a meaningful response. Where possible, the ablation ice ball should fully cover DF tumours.


Assuntos
Criocirurgia , Fibromatose Agressiva , Criocirurgia/métodos , Feminino , Fibromatose Agressiva/diagnóstico por imagem , Fibromatose Agressiva/patologia , Fibromatose Agressiva/cirurgia , Humanos , Gelo , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Reino Unido
17.
Climacteric ; 25(1): 81-87, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34423690

RESUMO

Osteoporosis and sarcopenia are two conditions associated with aging and characterized by a simultaneous decline in bone and muscle mass, respectively. These conditions share common risk factors (genetic, endocrine, nutritional and lifestyle factors) and biological pathways that often co-exist in a syndrome known as osteosarcopenia. Among the endocrine causes, estrogens play a critical role, especially in women. Estrogens have been demonstrated to exert a positive effect on bone and muscle development and maintenance. For this reason, menopause is characterized by a loss in bone mineral density and skeletal muscle quality and quantity. To date, studies indicate a positive effect of hormonal therapy on the prevention and management of osteoporosis, to the point that estrogen is prescribed as a first-line treatment for osteoporosis by the major international authorities. While results on sarcopenia are still disputable, such that estrogens are not recommended to prevent muscle loss in postmenopausal women, increased response to anabolic stimuli with estrogen therapy suggests similar beneficial effects on muscle as seen with bone, particularly when combined with resistance exercise.


Assuntos
Osteoporose , Sarcopenia , Biologia , Densidade Óssea/fisiologia , Estrogênios/uso terapêutico , Feminino , Humanos , Músculo Esquelético/metabolismo , Osteoporose/complicações , Sarcopenia/tratamento farmacológico
18.
Regul Toxicol Pharmacol ; 131: 105160, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35311659

RESUMO

Rodent cancer bioassays have been long-required studies for regulatory assessment of human cancer hazard and risk. These studies use hundreds of animals, are resource intensive, and certain aspects of these studies have limited human relevance. The past 10 years have seen an exponential growth of new technologies with the potential to effectively evaluate human cancer hazard and risk while reducing, refining, or replacing animal use. To streamline and facilitate uptake of new technologies, a workgroup comprised of scientists from government, academia, non-governmental organizations, and industry stakeholders developed a framework for waiver rationales of rodent cancer bioassays for consideration in agrochemical safety assessment. The workgroup used an iterative approach, incorporating regulatory agency feedback, and identifying critical information to be considered in a risk assessment-based weight of evidence determination of the need for rodent cancer bioassays. The reporting framework described herein was developed to support a chronic toxicity and carcinogenicity study waiver rationale, which includes information on use pattern(s), exposure scenario(s), pesticidal mode-of-action, physicochemical properties, metabolism, toxicokinetics, toxicological data including mechanistic data, and chemical read-across from similar registered pesticides. The framework could also be applied to endpoints other than chronic toxicity and carcinogenicity, and for chemicals other than agrochemicals.


Assuntos
Neoplasias , Praguicidas , Agroquímicos/toxicidade , Animais , Bioensaio , Testes de Carcinogenicidade , Praguicidas/toxicidade , Medição de Risco , Roedores
19.
Phytother Res ; 36(8): 3215-3231, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35778942

RESUMO

Various factors interfere with the endoplasmic reticulum (ER) function, which is involved in protein folding and calcium homeostasis. ER dysfunction referred to as ER stress triggers cell death by apoptosis and inflammation. Berberine (BBR) is an alkaloid extracted from the family Berberidacea. It has shown multiple pharmacological activities, including anti-inflammatory, antioxidative, anti-apoptotic, antiproliferative, and antihypertensive. It has been reported that BBR can decrease apoptosis and inflammation following different pathological conditions, which might be mediated by targeting ER stress pathways. In this manuscript, we reviewed the protective potential of BBR against several diseases, such as metabolic disorders, cancer, intestinal diseases, cardiovascular, liver, kidney, and central nervous system diseases, in both in vivo and in vitro studies.


Assuntos
Berberina , Estresse do Retículo Endoplasmático , Antioxidantes/farmacologia , Apoptose , Berberina/farmacologia , Berberina/uso terapêutico , Humanos , Inflamação/tratamento farmacológico
20.
Toxicol Mech Methods ; 32(5): 385-394, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34979868

RESUMO

Aloe products are increasingly valued as ingredients in food supplements and as flavoring agents. The global Aloe vera market is varied, large, growing, and increasingly important in food, cosmetics, and medicines. Aloin, an anthraquinone glycoside, is one of the major components by weight of the anthraquinone derivatives of Aloe vera gel. Principal metabolites, aloe emodin and emodin, are a source of debate concerning toxic vs salutary effects, hence the accurate toxicological characterization of these compounds has become increasingly important. The purpose of this study was to determine the genotoxic profile of a stabilized Aloe vera juice product derived from the inner filet and marketed as a beverage currently sold in the European Union containing 8 to 10 ppm aloin and a mixture of purified aloin A and B. The present data confirm that a commercial stabilized Aloe vera gel intended for consumption as a juice beverage is not genotoxic. Furthermore, both aloin A and B were negative in the same assays and therefore are also not genotoxic. These results are consistent with the work of other groups and contrast with data obtained using products containing the Aloe vera latex hydroxyanthracene derivatives (HADs).


Assuntos
Aloe , Emodina , Aloe/toxicidade , Bebidas , Dano ao DNA , Emodina/análogos & derivados , Emodina/análise , Emodina/toxicidade , Extratos Vegetais/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA