Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Metab Pharmacokinet ; 30(5): 358-65, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26320626

RESUMO

Bavachinin (BCI), a major bioactive compound in Chinese herbal Psoralea corylifolia, possesses a wide range of biological activities. In this study, the glucuronidation pathway of BCI was characterized for the first time, by using pooled human liver microsomes (HLM), pooled human intestine microsomes (HIM) and recombinant human UDP-glucosyltransferases (UGTs). One mono-glucuronide was detected in HLM in the presence of uridine-diphosphate glucuronic acid (UDPGA), and it was biosynthesized and well-characterized as BCI-4'-O-glucuronide (BCIG). Reaction phenotyping assay showed that UGT1A1, UGT1A3 and UGT1A8 were involved in BCI-4'-O-glucuronidation, while UGT1A1 and UGT1A8 displayed the higher catalytic ability among all tested UGT isoforms. Kinetic analysis demonstrated that BCI-4'-O-glucuronidation in both HLM and UGT1A1 followed sigmoidal kinetic behaviors and displayed much close Km values (12.4 µM in HLM & 9.7 µM in UGT1A1). Both chemical inhibition assays and correlation analysis demonstrated that UGT1A1 displayed a predominant role in BCI-4'-O-glucuronidation in HLM. Both HIM and UGT1A8 exhibited substrate inhibition at high concentrations, and Km values of HIM and UGT1A8 were 3.6 and 2.3 µM, respectively. Similar catalytic efficiencies were observed for HIM (199.3 µL/min/mg) and UGT1A8 (216.2 µL/min/mg). These findings suggested that UGT1A1 and UGT1A8 were the primary isoforms involved in BCI-4'-O-glucuronidation in HLM, and HIM, respectively.


Assuntos
Flavonoides/farmacocinética , Glucuronosiltransferase/metabolismo , Animais , Estradiol/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/antagonistas & inibidores , Humanos , Técnicas In Vitro , Mucosa Intestinal/metabolismo , Isoenzimas/metabolismo , Cinética , Camundongos , Microssomos/metabolismo , Microssomos Hepáticos/metabolismo , Uridina Difosfato Ácido Glucurônico/metabolismo
2.
Drug Metab Pharmacokinet ; 29(2): 135-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24025985

RESUMO

Fraxetin, a major constituent of the traditional medicine plant Fraxinus rhynchophylla Hance (Oleaceae), has been found to possess multiple bioactivities. However, the metabolic pathway(s) of fraxetin in human tissues has not been reported yet. This study aimed to characterize the glucuronidation pathway(s) of fraxetin in human tissues. Fraxetin could be metabolized to two glucuronides in human liver microsomes (HLMs). These two glucuronides were biosynthesized and characterized as 7-O-glucuronide (7-O-G) and 8-O-glucuronide (8-O-G). UGT1A1, -1A6, -1A7, -1A8, -1A9 and -1A10 participated in the formation of 7-O-G, while the formation of 8-O-G was catalyzed selectively by UGT1A6 and UGT1A9. UGT1A9 showed the highest catalytic activities in the formation of 7-O-G and 8-O-G. Both kinetic characterization and inhibition assays demonstrated that UGT1A9 played important roles in fraxetin glucuronidations in HLMs, especially in the formation of the major metabolite 8-O-G. Furthermore, the intrinsic clearance of fraxetin in both human liver microsomes and UGT1A9 was greater than that of 7,8-dihydroxylcoumarin, revealing that the addition of a C-6 methoxy group led to the higher metabolic clearance. In summary, the glucuronidation pathways of fraxetin in human liver microsomes were well-characterized, and UGT1A9 was the major isoform responsible for the glucuronidations of fraxetin.


Assuntos
Cumarínicos/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Fígado/enzimologia , Biotransformação , Humanos , Isoenzimas , Cinética , Taxa de Depuração Metabólica , Microssomos Hepáticos/enzimologia , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , UDP-Glucuronosiltransferase 1A
3.
Eur J Pharm Sci ; 48(1-2): 360-9, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23220486

RESUMO

Boc5, the first nonpeptidic agonist of Glucagon-like peptide-1 receptor, has been recognized as a potential candidate for treatment of diabetes. However, the metabolic behaviors of this novel molecule in both human and experimental animals remain unclear. This study aimed to explore the metabolic behaviors of Boc5 in biological preparations from human, pig and rat. Boc5 was found to be very stable in liver microsomes of human, pig and rat, but it can be degraded to two metabolites in plasma from all three species, via the successive hydrolysis of the C-22 esters. Chemical inhibition studies using selective esterase inhibitors and assays with purified enzymes suggested that Boc5 hydrolysis in human was totally mediated by human serum albumin (HSA) rather than esterases. ESI-TOF-MS/MS analysis revealed that Lys525 of HSA could be modified by treatment with Boc5, strongly suggesting the pseudo-esterase activity of albumin. Studies on species differences in this albumin-mediated metabolism showed large species differences in degradation rate of Boc5, the half lives of Boc5 in plasma from three various species varied from 23.5 h to 83.1h, but they were much closer to the half lives of Boc5 in corresponding serum albumins, implying the predominant role of serum albumin in plasma metabolism of Boc5. Additionally, the effects of various ligands including fatty acids and several drugs with unambiguous binding sites on HSA, on the pseudo-esterase activity of HSA, were also investigated using both experimental and molecular modelling studies. These results showed that the binding of various ligands to HSA could significantly affect the pseudo-esterase activity of HSA towards Boc5, due to the ligand-induced conformation changes of HSA.


Assuntos
Ciclobutanos/farmacocinética , Hipoglicemiantes/farmacocinética , Albumina Sérica/metabolismo , Animais , Biotransformação , Ciclobutanos/sangue , Esterases/antagonistas & inibidores , Meia-Vida , Humanos , Hidrólise , Hipoglicemiantes/sangue , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Masculino , Microssomos/metabolismo , Simulação de Acoplamento Molecular , Ratos , Ratos Sprague-Dawley , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA