Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nature ; 610(7930): 182-189, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36131013

RESUMO

Most current therapies that target plasma membrane receptors function by antagonizing ligand binding or enzymatic activities. However, typical mammalian proteins comprise multiple domains that execute discrete but coordinated activities. Thus, inhibition of one domain often incompletely suppresses the function of a protein. Indeed, targeted protein degradation technologies, including proteolysis-targeting chimeras1 (PROTACs), have highlighted clinically important advantages of target degradation over inhibition2. However, the generation of heterobifunctional compounds binding to two targets with high affinity is complex, particularly when oral bioavailability is required3. Here we describe the development of proteolysis-targeting antibodies (PROTABs) that tether cell-surface E3 ubiquitin ligases to transmembrane proteins, resulting in target degradation both in vitro and in vivo. Focusing on zinc- and ring finger 3 (ZNRF3), a Wnt-responsive ligase, we show that this approach can enable colorectal cancer-specific degradation. Notably, by examining a matrix of additional cell-surface E3 ubiquitin ligases and transmembrane receptors, we demonstrate that this technology is amendable for 'on-demand' degradation. Furthermore, we offer insights on the ground rules governing target degradation by engineering optimized antibody formats. In summary, this work describes a strategy for the rapid development of potent, bioavailable and tissue-selective degraders of cell-surface proteins.


Assuntos
Anticorpos , Especificidade de Anticorpos , Proteínas de Membrana , Proteólise , Ubiquitina-Proteína Ligases , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Neoplasias Colorretais/metabolismo , Ligantes , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Especificidade por Substrato , Ubiquitina-Proteína Ligases/imunologia , Ubiquitina-Proteína Ligases/metabolismo
2.
Nanomedicine ; 14(2): 279-288, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29127038

RESUMO

Cationic lipids containing lysine head groups and ditetradecyl, dihexadecyl or dioctadecyl glutamate hydrophobic moieties with/without propyl, pentyl or heptyl spacers were applied for the preparation of cationic liposomes using a simple bath type-sonicator. The size distribution, zeta potential, cellular internalization, and cytotoxicity of the liposomes were characterized, and the innate immune stimulation, e.g., the NLRP3 inflammasome activation of human macrophages and THP-1 cells, was evaluated by the detection of IL-1ß release. Comparatively, L3C14 and L5C14 liposomes, made from the lipids bearing lysine head groups, ditetradecyl hydrophobic chains and propyl or pentyl spacers, respectively, were the most potent to activate the NLRP3 inflammasome. The possible mechanism includes endocytosis of the cationic liposomes and subsequent lysosome rupture without significant inducement of reactive oxygen species production. In summary, we first disclosed the structural effect of cationic liposomes on the NLRP3 inflammasome activation, which gives an insight into the application of nanoparticles for improved immune response.


Assuntos
Cátions/química , Inflamassomos/imunologia , Lipossomos/administração & dosagem , Lisina/química , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Nanopartículas/administração & dosagem , Células Cultivadas , Humanos , Interações Hidrofóbicas e Hidrofílicas , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Lipossomos/química , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanopartículas/química , Células THP-1
3.
Biochem Biophys Rep ; 18: 100623, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31011633

RESUMO

Lysine (K) type cationic lipid with a propyl spacer and ditetradecyl hydrophobic moieties composing liposomes, K3C14, previously studied for gene delivery, were reported to activate the NLRP3 inflammasomes in human macrophages via the conventional phagolysosomal pathway. In this study, K3C16, a propyl spacer bearing lysine type lipids with dihexadecyl moieties (an extension of two hydrocarbon tail length) were compared with K3C14 as liposomes. Such a small change in tail length did not alter the physical properties such as size distribution, zeta potential and polydispersity index (PDI). The NLRP3 activation potency of K3C16 was shown to be 1.5-fold higher. Yet, the toxicity was minimal, whereas K3C14 has shown to cause significant cell death after 24 h incubation. Even in the presence of endocytosis inhibitors, cytochalasin D or dynasore, K3C16 continued to activate the NLRP3 inflammasomes and to induce IL-1ß release. To our surprise, K3C16 liposomes were confirmed to fuse with the plasma membrane of human macrophages and CHO-K1 cells. It is demonstrated that the change in hydrophobic tail length by two hydrocarbons drastically changed a cellular entry route and potency in activating the NLRP3 inflammasomes.

4.
Int J Nanomedicine ; 14: 3503-3516, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190807

RESUMO

Purpose: The NLRP3 inflammasome activation has been proposed as a common mechanism for some adjuvants to boost the immune system, and cationic liposomes were reported to potentially activate the NLRP3 inflammasome. Herein, we questioned whether the NLRP3 inflammasome-activating cationic liposomes could promote antigen presentation and be applied as an immune adjuvant. In addition, we aimed to investigate the structure effect of lipid on triggering these immune responses. Materials and methods: A series of structurally similar lipids, consisting of arginine (Arg) head group and varied lengths of alkyl chains or spacers in between were used to prepare cationic liposomes. Lipopolysaccharide-primed human or murine macrophages or phorbol 12-myristate 13-acetate-primed THP-1 cells were treated with these liposomes, and interleukin (IL)-1ß secretion was measured to quantify the NLRP3 inflammasome activation. Lysosome rupture was examined in THP-1 cells by the fluorescence loss of acridine orange, a lysosome dye. Further, chicken ovalbumin (OVA) was loaded on the liposome surface and applied to murine bone marrow-derived dendritic cells (BMDCs), which activate OT-I and OT-II lymphocytes upon major histocompatibility complex (MHC) class I- and class II-mediated antigen presentation, respectively. OT-I and OT-II cell division and IL-2 secretion were measured to evaluate the antigen presentation efficiency. The expressions of MHC molecules and co-stimulatory molecules ie, CD80, CD86, and CD40 on BMDCs were investigated by flow cytometry. Results: All the liposomes showed size distributions of 80-200 nm and zeta potentials of around 50 mV. A3C14 liposomes, consisting of Arg-C3-Glu2C14 lipids induced the most potent lysosome rupture and NLRP3 inflammasome activation. OVA-A3C14 also exhibited the most potent MHC class I- and class II-mediated antigen presentation in BMDCs without interfering MHC and co-stimulatory molecules. Conclusion: The hydrophobic moieties of arginine-based liposomes are crucial in stimulating innate immune cells. A3C14 liposomes were non-immunogenic but strongly activated innate immune cells and promoted antigen presentation, and therefore can be applied as immune adjuvants.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Arginina/farmacologia , Células Dendríticas/imunologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Cátions , Células Dendríticas/efeitos dos fármacos , Feminino , Antígenos de Histocompatibilidade/metabolismo , Humanos , Lipídeos/química , Lipopolissacarídeos/farmacologia , Lipossomos , Lisossomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA