Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 36(5): 1755-1776, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38318972

RESUMO

The milestone of compound leaf development is the generation of separate leaflet primordia during the early stages, which involves two linked but distinct morphogenetic events: leaflet initiation and boundary establishment for leaflet separation. Although some progress in understanding the regulatory pathways for each event have been made, it is unclear how they are intrinsically coordinated. Here, we identify the PINNATE-LIKE PENTAFOLIATA2 (PINNA2) gene encoding a newly identified GRAS transcription factor in Medicago truncatula. PINNA2 transcripts are preferentially detected at organ boundaries. Its loss-of-function mutations convert trifoliate leaves into a pinnate pentafoliate pattern. PINNA2 directly binds to the promoter region of the LEAFY orthologue SINGLE LEAFLET1 (SGL1), which encodes a key positive regulator of leaflet initiation, and downregulates its expression. Further analysis revealed that PINNA2 synergizes with two other repressors of SGL1 expression, the BEL1-like homeodomain protein PINNA1 and the C2H2 zinc finger protein PALMATE-LIKE PENTAFOLIATA1 (PALM1), to precisely define the spatiotemporal expression of SGL1 in compound leaf primordia, thereby maintaining a proper pattern of leaflet initiation. Moreover, we showed that the enriched expression of PINNA2 at the leaflet-to-leaflet boundaries is positively regulated by the boundary-specific gene MtNAM, which is essential for leaflet boundary formation. Together, these results unveil a pivotal role of the boundary-expressed transcription factor PINNA2 in regulating leaflet initiation, providing molecular insights into the coordination of intricate developmental processes underlying compound leaf pattern formation.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula , Folhas de Planta , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Morfogênese/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Physiol Plant ; 176(3): e14310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666425

RESUMO

Semi-leafless represents an advantageous plant architecture in pea breeding due to its ability to enhance resistance to lodging and potentially to powdery mildew. The introduction of semi-leafless pea varieties is considered a seminal advancement in pea breeding over the past half-century. The afila (af) mutation leads to the replacement of lateral leaflets by highly branched tendrils; combined with the semi-dwarfing le mutation, it forms the semi-leafless cultivated variety. In this study, we identified that mutations in two tandemly-arrayed genes encoding Cys(2)His(2) zinc finger transcription factors, PsPALM1a and PsPALM1b, were closely associated with the afila phenotype. These two genes may be deleted in the af mutant. In situ hybridization showed that both genes exhibit specific expression in early leaflet primordia. Furthermore, suppression of PsPALM1a/PsPALM1b resulted in a high frequency of conversion of lateral leaflets into tendrils. In conclusion, our study provides genetic evidence demonstrating that mutations in PsPALM1a and PsPALM1b are responsible for the af locus, contributing to a better understanding of compound leaf formation in peas and offering new insights for breeding applications related to afila.


Assuntos
Mutação , Fenótipo , Pisum sativum , Folhas de Planta , Proteínas de Plantas , Fatores de Transcrição , Pisum sativum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas
3.
Physiol Plant ; 176(2): e14280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644527

RESUMO

Inadequate reference databases in RNA-seq analysis can hinder data utilization and interpretation. In this study, we have successfully constructed a high-quality reference transcript dataset, ZjRTD1.0, for Zoysia japonica, a widely-used turfgrass with exceptional tolerance to various abiotic stress, including low temperatures and salinity. This dataset comprises 113,089 transcripts from 57,143 genes. BUSCO analysis demonstrates exceptional completeness (92.4%) in ZjRTD1.0, with reduced proportions of fragmented (3.3%) and missing (4.3%) orthologs compared to prior datasets. ZjRTD1.0 enables more precise analyses, including transcript quantification and alternative splicing assessments using public datasets, which identified a substantial number of differentially expressed transcripts (DETs) and differential alternative splicing (DAS) events, leading to several novel findings on Z. japonica's responses to abiotic stresses. First, spliceosome gene expression influenced alternative splicing significantly under abiotic stress, with a greater impact observed during low-temperature stress. Then, a significant positive correlation was found between the number of differentially expressed genes (DEGs) encoding protein kinases and the frequency of DAS events, suggesting the role of protein phosphorylation in regulating alternative splicing. Additionally, our results suggest possible involvement of serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs) in generating inclusion/exclusion isoforms under low-temperature stress. Furthermore, our investigation revealed a significantly enhanced overlap between DEGs and differentially alternatively spliced genes (DASGs) in response to low-temperature stress, suggesting a unique co-regulatory mechanism governing transcription and splicing in the context of low-temperature response. In conclusion, we have proven that ZjRTD1.0 will serve as a reliable and useful resource for future transcriptomic analyses in Z. japonica.


Assuntos
Processamento Alternativo , Temperatura Baixa , Poaceae , Processamento Alternativo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Estresse Fisiológico/genética , Transcriptoma/genética
4.
Appl Microbiol Biotechnol ; 108(1): 220, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372806

RESUMO

Aeromonas is the main pathogen causing bacterial diseases in fish. The disadvantages of chemical drugs to control fish diseases have been highlighted, and it is urgent to find an eco-friendly control method. In this study, an actinomycete strain with antibacterial activity against fish pathogenic bacteria was screened from soil samples. Combined with morphological characteristics, physiological and biochemical characteristics, and gyrB gene and whole genome comparison analysis, it was identified as a new strain of Streptomyces enissocaesilis, named Streptomyces enissocaesilis L-82. The strain has broad-spectrum antibacterial activity against fish pathogens. A substance with a mass-to-charge ratio of 227.20 [M + H] + was isolated and purified by high-performance liquid chromatography and mass spectrometry. It was presumed to be a derivative of 5-dimethylallylindole-3-acetonitrile. The strain is safe and non-toxic to crucian carp, and can stably colonize crucian carp and inhibit the proliferation of A. hydrophila. After feeding the feed containing 1 × 108 CFU/mL strain concentration, the weight growth rate and specific growth rate of crucian carp increased, the activity of ACP and SOD in serum increased, and the survival rate of crucian carp increased after challenge. Genome-wide analysis showed that the strain had strong ability to metabolize and tolerate extreme environments. And has a strong potential for disease resistance. Therefore, the strain is expected to be developed as a feed additive for fish farming. KEY POINTS: • The new Streptomyces enissocaesilis L-82 has a broad spectrum and stable antibacterial activity and meets the safety standards of feed additives. • Strain L-82 can colonize crucian carp, improve the growth, antioxidant, and immune performance of the host, and improve the survival rate after being infected with A. hydrophila. • Genome-wide analysis suggests that the strain has great disease resistance potential and is expected to be developed as a feed additive for fish culture.


Assuntos
Carpas , Carpa Dourada , Streptomyces , Animais , Resistência à Doença , Antibacterianos/farmacologia
5.
BMC Plant Biol ; 23(1): 171, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37003985

RESUMO

BACKGROUND: Fruit aroma is an important quality with respect to consumer preference, but the most important aroma compounds and their genetic regulatory mechanisms remain elusive. RESULTS: In this study, we qualitatively analysed volatile compounds in the pulp and skin of five table grape cultivars with three aroma types (muscat, strawberry, and neutral) using solid-phase microextraction gas chromatography/mass spectrometry. We identified 215 aroma compounds, including 88 esters, 64 terpenes, and 29 alcohols, and found significant differences in the number of compounds between the pulp and skin, especially for terpenes. Skin transcriptome data for the five grape cultivars were generated and subjected to aroma compound-gene correlation analysis. The combined transcriptomic analysis and terpene profiling data revealed 20 candidate genes, which were assessed in terms of their involvement in aroma biosynthetic regulation, including 1 VvCYP (VIT_08s0007g07730), 2 VvCCR (VIT_13s0067g00620, VIT_13s0047g00940), 3 VvADH (VIT_00s0615g00010, VIT_00s0615g00030, VIT_ 00s0615g00020), and 1 VvSDR (VIT_08s0040g01200) in the phenylpropanoids synthesis pathway, and 1 VvDXS (VIT_05s0020g02130) and 6 VvTPS (VIT_13s0067g00370, Vitis_vinifera_newGene_3216, VIT_13s0067g00380, VIT_13s0084g00010, VIT_00s0271g00010, and VIT_13s0067g00050) in the methylerythritol phosphate pathway (involved in the production and accumulation of aromatic compounds). Additionally, 2 VvMYB (VIT_17s0000g07950, VIT_03s0063g02620) and 1 VvGATA (VIT_15s0024g00980) transcription factor played important regulatory roles in the accumulation of key biosynthetic precursors of these compounds in grapes. Our results indicated that downstream genes, specifically 1 VvBGLU (VIT_03s0063g02490) and 2 VvUGT (VIT_17s0000g07070, VIT_17s0000g07060) are involved in regulating the formation and volatilization of bound compounds in grapes. CONCLUSIONS: The results of this study shed light on the volatile compounds and "anchor points" of synthetic pathways in the pulp and skin of muscat and strawberry grapes, and provide new insight into the regulation of different aromas in grapes.


Assuntos
Vitis , Compostos Orgânicos Voláteis , Vitis/genética , Vitis/metabolismo , Transcriptoma , Odorantes/análise , Compostos Orgânicos Voláteis/metabolismo , Terpenos/metabolismo , Frutas/metabolismo
6.
Physiol Plant ; 175(3): e13943, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260122

RESUMO

MYB transcriptional regulators belong to one of the most significant transcription factors families in plants, among which R2R3-MYB transcription factors are involved in plant growth and development, hormone signal transduction, and stress response. Two R2R3-MYB transcription factors, FLP and its paralogous AtMYB88, redundantly regulate the symmetrical division of guard mother cells (GMCs), and abiotic stress response in Arabidopsis thaliana. Only one orthologue gene of FLP was identified in pea (Pisum sativum FLP; PsFLP). In this study, we explored the gene function of PsFLP by virus-induced gene silencing (VIGS) technology. The phenotypic analysis displayed that the silencing of PsFLP expression led to the abnormal development of stomata and the emergence of multiple guard cells tightly united. In addition, the abnormal stomata of flp could be fully rescued by PsFLP driven by the FLP promoter. In conclusion, the results showed that PsFLP plays a conservative negative role in regulating the symmetric division of GMC during stomatal development. Based on real-time quantitative PCR, the relative expressions of AAO3, NCED3, and SnRK2.3 significantly increased in the flp pFLP::PsFLP plants compared to mutant, indicating that PsFLP might be involved in drought stress response. Thus, PsFLP regulates the genes related to cell cycle division during the stomatal development of peas and participates in response to drought stress. The study provides a basis for further research on its function and application in leguminous crop breeding.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Arabidopsis/metabolismo , Células-Tronco/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Physiol Plant ; 175(5): e14046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882293

RESUMO

Plant organ size is an important agronomic trait tightly related to crop yield. However, the molecular mechanisms underlying organ size regulation remain largely unexplored in legumes. We previously characterized a key regulator F-box protein MINI ORGAN1 (MIO1)/SMALL LEAF AND BUSHY1 (SLB1), which controls plant organ size in the model legume Medicago truncatula. In order to further dissect the molecular mechanism, MIO1 was used as the bait to screen its interacting proteins from a yeast library. Subsequently, a KIX protein, designated MtKIX8, was identified from the candidate list. The interaction between MIO1 and MtKIX8 was confirmed further by Y2H, BiFC, split-luciferase complementation and pull-down assays. Phylogenetic analyses indicated that MtKIX8 is highly homologous to Arabidopsis KIX8, which negatively regulates organ size. Moreover, loss-of-function of MtKIX8 led to enlarged leaves and seeds, while ectopic expression of MtKIX8 in Arabidopsis resulted in decreased cotyledon area and seed weight. Quantitative reverse-transcription PCR and in situ hybridization showed that MtKIX8 is expressed in most developing organs. We also found that MtKIX8 serves as a crucial molecular adaptor, facilitating interactions with BIG SEEDS1 (BS1) and MtTOPLESS (MtTPL) proteins in M. truncatula. Overall, our results suggest that the MIO1-MtKIX8 module plays a significant and conserved role in the regulation of plant organ size. This module could be a good target for molecular breeding in legume crops and forages.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Medicago truncatula , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Tamanho do Órgão , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
8.
J Sep Sci ; 46(19): e2300320, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37541285

RESUMO

This study presents an efficient strategy for large-scale preparation of low polarity gingerols directly from ginger crude extract by high-speed countercurrent chromatography with different rotation mode. The ultrasonic-assisted extraction conditions were optimized by response surface methodology and the results showed the major low polarity gingerols could be well enriched under the optimized extraction conditions. Then the crude extract without any pretreatment was directly separated by high-speed countercurrent chromatography with different rotation mode using n-hexane/ethyl acetate/methanol/water (6:4:6:4, v/v/v/v) as the solvent system. In about 400 min, five major gingerols including 150 mg of [6]-gingerol, 50 mg of [8]-gingerol, 20 mg of [6]-shogaol, 43 mg of [6]-dehydrogingerdione, and 40 mg of [10]-gingerol were obtained from 1.2 g of crude extract in a single run with repeated injection. Their structures were identified by 1 H-NMR spectroscopy.


Assuntos
Distribuição Contracorrente , Zingiber officinale , Distribuição Contracorrente/métodos , Zingiber officinale/química , Rotação , Extratos Vegetais/química , Álcoois Graxos/química
9.
J Sep Sci ; 46(1): e2200456, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36300722

RESUMO

Wendan decoction, a well-known classical traditional Chinese medicine prescription, has been widely used in the clinical application of coronary heart disease for thousands of years. However, due to a lack of research on the overall metabolism of Wendan decoction, the bioavailable components responsible for the therapeutic effects remain unclear, hindering the revelation of its mechanisms against coronary heart disease. Consequently, an efficient joint research pattern combined with characterization of the metabolic profile and network pharmacology analysis was proposed. As a result, a total of 172 Wendan decoction-related xenobiotics (57 prototypes and 115 metabolites) were detected based on the exploration of the typical metabolic pathways of representative pure compounds in vivo, describing their multi-component metabolic characteristics comprehensively. Subsequently, an integrated network of "herbs-bioavailable compounds-coronary heart disease targets-pathways-therapeutic effects" was constructed, and its seven compounds were finally screened out as the key components acting on five main targets of coronary heart disease. Overall, this work not only provided a crucial biological foundation for interpreting the effective components and action mechanisms of Wendan decoction on coronary heart disease but also showed a reference value for revealing the bioactive components of traditional Chinese medicine prescriptions.


Assuntos
Doença das Coronárias , Medicamentos de Ervas Chinesas , Humanos , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas , Metaboloma , Doença das Coronárias/tratamento farmacológico
10.
Environ Toxicol ; 38(6): 1292-1304, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36880193

RESUMO

Swietenia macrophylla King, belongs to the Meliaceae family, is a valuable medicinal plant and its fruits have been processed commercially to a variety of health foods. The seeds have long been known for their ethnomedicinal significance against these diseases. Swietenine (Swi) was isolated from S. macrophylla and could ameliorate inflammation and oxidative stress. In this study, HepG2 cells induced by H2 O2 were used to construct oxidative stress model in vitro. The aim of this study was to investigate the protective effect of Swi on H2 O2 induced oxidative injury in HepG2 cells and its molecular mechanism, and to explore the effect of Swi on liver injury in db/db mice and its possible mechanism. The results showed that Swi significantly inhibited HepG2 cells viability and reduced oxidative damage in a dose-dependent manner as evidenced by a range of biochemical analysis and immunoblotting study. Moreover, it induced the protein and mRNA expression of HO-1 together with its upstream mediator Nrf2 and activated the phosphorylation of AKT in HepG2 cells. LY294002, a PI3K/AKT inhibitor, significantly suppressed the Nrf2 nuclear translocation and HO-1 expression in H2 O2 induced HepG2 cells treated with Swi. In addition, RNA interference with Nrf2 significantly reduced the expression level of Nrf2 and HO-1 in the nucleus. Swi has a significant protective effect on cell damage in H2 O2 induced HepG2 cells by increasing the antioxidant capacity which is achieved through the AKT/Nrf2/HO-1 pathway. Additionally, in vivo, Swi could protect the liver of type 2 diabetic mice by improving lipid deposition in liver tissue and inhibiting oxidative stress. These findings indicated that Swi can be a promising dietary agent to improve type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Apoptose , Estresse Oxidativo , Transdução de Sinais , Fígado/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo
11.
Entropy (Basel) ; 25(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37761602

RESUMO

Recently, many password guessing algorithms have been proposed, seriously threatening cyber security. In this paper, we systematically review over thirty methods for password guessing published between 2016 and 2023. First, we introduce a taxonomy for classifying the existing methods into trawling guessing and targeted guessing. Second, we present an extensive benchmark dataset that can assist researchers and practitioners in successive works. Third, we conduct a bibliometric analysis to present trends in this field and cross-citation between reviewed papers. Further, we discuss the open challenges of password guessing in terms of diverse application scenarios, guessing efficiency, and the combination of traditional and deep learning methods. Finally, this review presents future research directions to guide successive research and development of password guessing.

12.
Anal Chem ; 94(28): 10062-10073, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35786885

RESUMO

In high-throughput scenarios of targeted metabolomics, it is a significant challenge to process complex NMR spectra with severely overlapping signals produced by metabolites with similar chemical structures. Traditional frequency-domain NMR is ineffective to some degree due to the low sensitivity and poor resolution, and the precision of quantitation is usually affected by poorly or inconsistently phased and baselined spectra. Here, we established a strategy based on time-domain NMR focusing on methyl protons for targeted metabolomics. The targeted metabolomics focusing on bufadienolides for varietal discrimination of three toad venoms was conducted to demonstrate the practicability of time-domain-based methyl proton NMR. It revealed that the signals could be precisely identified and quantitated with an signal-to-noise ratio (SNR) of about 10 and a resolution of about 1.0 Hz. The sensitivity and resolution improvement make it particularly applicable in targeted metabolomics. The precise and absolute quantitation ability confirmed by triple-quadrupole mass spectrometry (QqQ-MS) could further extend its application range. Importantly, the methyl group is common in metabolites with a relatively wide chemical shift range. Time-domain analysis could be conducted in common NMR software. This technique is very easy and convenient for general researchers when employed as a complementary alternative to traditional frequency-domain NMR, especially in the field of targeted metabolomics.


Assuntos
Metabolômica , Prótons , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos
13.
J Exp Bot ; 73(12): 4129-4146, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35294003

RESUMO

Anthocyanins and proanthocyanins (PAs) are two end products of the flavonoid biosynthesis pathway. They are believed to be synthesized in the endoplasmic reticulum and then sequestered into the vacuole. In Arabidopsis thaliana, TRANSPARENT TESTA 19 (TT19) is necessary for both anthocyanin and PA accumulation. Here, we found that MtGSTF7, a homolog of AtTT19, is essential for anthocyanin accumulation but not required for PA accumulation in Medicago truncatula. MtGSTF7 was induced by the anthocyanin regulator LEGUME ANTHOCYANIN PRODUCTION 1 (LAP1), and its tissue expression pattern correlated with anthocyanin deposition in M. truncatula. Tnt1-insertional mutants of MtGSTF7 lost anthocyanin accumulation in vegetative organs, and introducing a genomic fragment of MtGSTF7 could complement the mutant phenotypes. Additionally, the accumulation of anthocyanins induced by LAP1 was significantly reduced in mtgstf7 mutants. Yeast-one-hybridization and dual-luciferase reporter assays revealed that LAP1 could bind to the MtGSTF7 promoter to activate its expression. Ectopic expression of MtGSTF7 in tt19 mutants could rescue their anthocyanin deficiency, but not their PA defect. Furthermore, PA accumulation was not affected in the mtgstf7 mutants. Taken together, our results show that the mechanism of anthocyanin and PA accumulation in M. truncatula is different from that in A. thaliana, and provide a new target gene for engineering anthocyanins in plants.


Assuntos
Arabidopsis , Medicago truncatula , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Anesth Analg ; 135(4): 837-844, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35426836

RESUMO

BACKGROUND: Because it is traditionally difficult and time-consuming to identify the foramen ovale (FO) with fluoroscopy, we recently developed the H-figure method to acquire fluoroscopic view of FO with shorter procedure time and less radiation. However, the impact of such an H-figure approach on the clinical outcomes of trigeminal ganglion radiofrequency thermocoagulation (RFT) in treating idiopathic trigeminal neuralgia (ITN) remains unclear. METHODS: In a 12-month follow-up retrospective cohort study, patients with ITN had fluoroscopy-guided RFT of trigeminal ganglion via either classic approach (n = 100) or H-figure approach (n = 136) to identify FO. Data of continuous variables were analyzed with a Shapiro-Wilk test for normality and subsequently with a Mann-Whitney test, and the binary data were analyzed with a χ 2 test. The primary outcome was the facial pain measured by a Visual Analog Scale (VAS) 1 year after the treatment. The secondary outcomes included the quality of the fluoroscopic FO views, the threshold voltage to provoke paresthesia, the procedure time, the number of fluoroscopic images, and the facial numbness VAS. RESULTS: Compared with the classic approach group, the H-figure approach group was associated with better long-term pain relief after the procedure, with significantly fewer patients had pain 3 months (6.6% vs 17.0%, P = .012) and 12 months (21.3% vs 38.0%, P = .005) after the procedure, and among patients who had pain after the procedure, patients in the H-figure group had significantly less pain 6 months after the procedure (VAS median [interquartile range (IQR)]: 3 [2-6] vs 6 [4-7], P < .001). Moreover, compared to the classic approach, the H-figure approach provided better fluoroscopic view of FO, lower threshold voltage to elicit paresthesia (median [IQR]: 0.2 [0.2-0.3] vs 0.4 [0.4-0.5] V, P < .0001), with shorter procedure time (median [IQR]: 7.5 [6.0-9.0] vs 14.0 [10.0-18.0] min, P < .0001), and required fewer fluoroscopic images (median [IQR]: 4.0 [3.0-5.0] vs 8.0 [6.0-10.0], P < .0001). CONCLUSIONS: RFT of the trigeminal ganglion using the H-figure approach is associated with superior longer term clinical pain relief than the classic approach in treating ITN.


Assuntos
Forame Oval , Neuralgia do Trigêmeo , Dor Facial , Fluoroscopia , Humanos , Parestesia , Estudos Retrospectivos , Resultado do Tratamento , Neuralgia do Trigêmeo/diagnóstico por imagem , Neuralgia do Trigêmeo/terapia
15.
Environ Toxicol ; 37(12): 2977-2989, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36066211

RESUMO

Swietenine (Swi), isolated from Swietenia macrophylla King ameliorates inflammation and oxidative stress, and diabetic nephropathy has a close connection with them. So the effects of Swi on diabetic nephropathy and its mechanism of action was explored. We divided human mesangial cells into five groups and determined the expression of NF-κB and NLRP3 inflammasomes in each group. The levels of inflammatory factors IL-1ß and IL-18 were also measured. To explore the relationship between NF-κB and NLRP3, we added PDTC, a specific NF-κB inhibitor, and LPS, and divided the experimental groups into seven groups. We measured the expressions of NF-κB and NLRP3, and then added MCC950, a specific inhibitor of NLRP3 and LPS, the expression of NLRP3, Caspase-1, and IL-1ß and IL-18 were measured. Animals divided into four groups and administered over 8 weeks. Protein excretion, creatinine, urea nitrogen, and uric acid were measured. Swi down regulated the expression of NF-κB, NLRP3, and Caspase-1. It reduced the levels of IL-1ß and IL-18. PDTC decreased the expression of NF-κB and NLRP3. Compared with the HG + PDTC group, the expression of NF-κB and NLRP3 in the HG + Swi + PDTC group decreased significantly. After adding lipopolysaccharide, the expression of NF-κB and NLRP3 increased, but this situation was reversed after adding Swi. After adding LPS, the expression of NLRP3 and Caspase-1 increased, and the levels of IL-1ß and IL-18 also increased, but this situation was reversed after the addition of Swi. Swi significantly improved the renal function of mice with diabetic nephropathy and inhibited the activation of NF-κB and the NLRP3 inflammasome and reduced inflammation by regulating the NF-κB/NLRP3/Caspase-1 signaling pathway, thereby improving diabetic nephropathy.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Camundongos , Humanos , Caspase 1/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Interleucina-18 , Lipopolissacarídeos/farmacologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Transdução de Sinais , Inflamação/metabolismo
16.
Environ Toxicol ; 37(11): 2780-2792, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36214338

RESUMO

Oxidative stress is an important factor that causes pancreatic ß-cell dysfunction leading to the development and aggravation of diabetes. Swietenine (Stn) and swietenolide (Std) were isolated from the fruits of Swietenia macrophylla King and had the potential effects on treatment and prevention of diabetes. The aim of this study is to investigate the effects of Stn and Std on insulin secretion and apoptosis in H2 O2 induced insulinoma cell line (INS-1) cells. In the present study, INS-1 cells were treated with 300 µM H2 O2 for 4 h to establish the oxidative damage model. Cell apoptosis, insulin secretion, reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) levels, and Caspase-3 enzyme activity were measured via corresponding methods. Finally, pancreatic duodenal home box factor-1 (PDX-1), B cell lymphoma-2 (Bcl-2), and Bax protein expression were detected by western blot. Experimental results showed that Stn and Std could significantly improve the INS-1 cell viability, increase the secretion of insulin and reduce the ROS level in H2 O2 induced INS-1 cells. Furthermore, the SOD and GSH levels increased, and the MDA levels decreased compared with the model group after Stn and Std treatment. In addition, after treated with Stn and Std, cell apoptosis was improved, and the activity of Caspase 3 was also significantly inhibited. Meanwhile, Western blot results showed that Stn and Std could up-regulate the expression of PDX-1 protein, and affect the cell apoptosis pathway by up-regulating the expression of Bcl-2 protein and down-regulating the expression of Bax protein. In conclusion, Stn and Std can signifcantly improve the insulin secretion function, protect oxidative stress injury, and reduce apoptosis in H2 O2 induced INS-1 cells, which provides a research basis for Stn and Std to be new drug candidates for the treatment and prevention of diabetes.


Assuntos
Diabetes Mellitus , Meliaceae , Infecções Sexualmente Transmissíveis , Apoptose , Caspase 3/metabolismo , Glutationa/metabolismo , Insulina/metabolismo , Secreção de Insulina , Limoninas , Malondialdeído/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Proteína X Associada a bcl-2/metabolismo
17.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457256

RESUMO

Nyctinastic leaf movement of Fabaceae is driven by the tiny motor organ pulvinus located at the base of the leaf or leaflet. Despite the increased understanding of the essential role of ELONGATED PETIOLULE1 (ELP1)/PETIOLE LIKE PULVINUS (PLP) orthologs in determining pulvinus identity in legumes, key regulatory components and molecular mechanisms underlying this movement remain largely unclear. Here, we used WT pulvinus and the equivalent tissue in the elp1 mutant to carry out transcriptome and proteome experiments. The omics data indicated that there are multiple cell biological processes altered at the gene expression and protein abundance level during the pulvinus development. In addition, comparative analysis of different leaf tissues provided clues to illuminate the possible common primordium between pulvinus and petiole, as well as the function of ELP1. Furthermore, the auxin pathway, cell wall composition and chloroplast distribution were altered in elp1 mutants, verifying their important roles in pulvinus development. This study provides a comprehensive insight into the motor organ of the model legume Medicago truncatula and further supplies a rich dataset to facilitate the identification of novel players involved in nyctinastic movement.


Assuntos
Medicago truncatula , Pulvínulo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Pulvínulo/metabolismo
18.
Plant Mol Biol ; 105(1-2): 193-204, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33037987

RESUMO

KEY MESSAGE: A 3-ketoacyl-CoA synthase involved in biosynthesis of very long chain fatty acids and cuticular wax plays a vital role in aerial organ development in M. truncatula. Cuticular wax is composed of very long chain fatty acids and their derivatives. Defects in cuticular wax often result in organ fusion, but little is known about the role of cuticular wax in compound leaf and flower development in Medicago truncatula. In this study, through an extensive screen of a Tnt1 retrotransposon insertion population in M. truncatula, we identified four mutant lines, named wrinkled flower and leaf (wfl) for their phenotype. The phenotype of the wfl mutants is caused by a Tnt1 insertion in Medtr3g105550, encoding 3-ketoacyl-CoA synthase (KCS), which functions as a rate-limiting enzyme in very long chain fatty acid elongation. Reverse transcription-quantitative PCR showed that WFL was broadly expressed in aerial organs of the wild type, such as leaves, floral organs, and the shoot apical meristem, but was expressed at lower levels in roots. In situ hybridization showed a similar expression pattern, mainly detecting the WFL transcript in epidermal cells of the shoot apical meristem, leaf primordia, and floral organs. The wfl mutant leaves showed sparser epicuticular wax crystals on the surface and increased water permeability compared with wild type. Further analysis showed that in wfl leaves, the percentage of C20:0, C22:0, and C24:0 fatty acids was significantly increased, the amount of cuticular wax was markedly reduced, and wax constituents were altered compared to the wild type. The reduced formation of cuticular wax and wax composition changes on the leaf surface might lead to the developmental defects observed in the wfl mutants. These findings suggest that WFL plays a key role in cuticular wax formation and in the late stage of leaf and flower development in M. truncatula.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Medicago truncatula/metabolismo , Desenvolvimento Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Ceras/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Ácidos Graxos/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Meristema/metabolismo , Conformação Molecular , Mutação , Fenótipo , Desenvolvimento Vegetal/genética , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/citologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Transcriptoma
19.
New Phytol ; 230(2): 475-484, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33458826

RESUMO

In most legumes, two typical features found in leaves are diverse compound forms and the pulvinus-driven nyctinastic movement. Many genes have been identified for leaf-shape determination, but the underlying nature of leaf movement as well as its association with the compound form remains largely unknown. Using forward-genetic screening and whole-genome resequencing, we found that two allelic mutants of Medicago truncatula with unclosed leaflets at night were impaired in MtDWARF4A (MtDWF4A), a gene encoding a cytochrome P450 protein orthologous to Arabidopsis DWARF4. The mtdwf4a mutant also had a mild brassinosteroid (BR)-deficient phenotype bearing pulvini without significant deficiency in organ identity. Both mtdwf4a and dwf4 could be fully rescued by MtDWF4A, and mtdwf4a could close their leaflets at night after the application of exogenous 24-epi-BL. Surgical experiments and genetic analysis of double mutants revealed that the failure to exhibit leaf movement in mtdwf4a is a consequence of the physical obstruction of the overlapping leaflet laminae, suggesting a proper geometry of leaflets is important for their movement in M. truncatula. These observations provide a novel insight into the nyctinastic movement of compound leaves, shedding light on the importance of open space for organ movements in plants.


Assuntos
Medicago truncatula , Pulvínulo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pulvínulo/metabolismo
20.
J Exp Bot ; 72(5): 1822-1835, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33277994

RESUMO

Plant-specific WOX family transcription factors play important roles ranging from embryogenesis to lateral organ development. The WOX1 transcription factors, which belong to the modern clade of the WOX family, are known to regulate outgrowth of the leaf blade specifically in the mediolateral axis; however, the role of WOX1 in compound leaf development remains unknown. Phylogenetic analysis of the whole WOX family in tomato (Solanum lycopersicum) indicates that there are 10 members that represent the modern, intermediate, and ancient clades. Using phylogenetic analysis and a reverse genetic approach, in this study we identified SlLAM1 in the modern clade and examined its function and tissue-specific expression pattern. We found that knocking out SlLAM1 via CRISPR/Cas9-mediated genome editing led to narrow leaves and a reduced number of secondary leaflets. Overexpression of tomato SlLAM1 could rescue the defects of the tobacco lam1 mutant. Anatomical and transcriptomic analyses demonstrated that floral organ development, fruit size, secondary leaflet initiation, and leaf complexity were altered due to loss-of-function of SlLAM1. These findings demonstrate that tomato SlLAM1 plays an important role in the regulation of secondary leaflet initiation, in addition to its conserved function in blade expansion.


Assuntos
Flores/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas , Solanum lycopersicum , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA