Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(9): 2040-2040.e1, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37116474

RESUMO

Farmed mammals may act as hosts for zoonotic viruses that can cause disease outbreaks in humans. This SnapShot shows which farmed mammals, and to what extent, are of particular risk of harboring and spreading viruses from viral families that are commonly associated with zoonotic disease. It also discusses genome surveillance methods and biosafety measures. To view this SnapShot, open or download the PDF.


Assuntos
Vírus , Zoonoses , Animais , Humanos , Mamíferos , Surtos de Doenças , Medição de Risco
2.
Cell ; 185(7): 1117-1129.e8, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35298912

RESUMO

Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Assuntos
Animais Selvagens/virologia , Doenças Transmissíveis Emergentes/virologia , Reservatórios de Doenças , Mamíferos/virologia , Viroma , Animais , China , Filogenia , Zoonoses
3.
Nat Immunol ; 23(6): 960-970, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654851

RESUMO

The emergence of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy. Development of broadly effective coronavirus vaccines that can mitigate these threats is needed. Here, we utilized a targeted donor selection strategy to isolate a large panel of human broadly neutralizing antibodies (bnAbs) to sarbecoviruses. Many of these bnAbs are remarkably effective in neutralizing a diversity of sarbecoviruses and against most SARS-CoV-2 VOCs, including the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor-binding domain (RBD). Consistent with targeting of conserved sites, select RBD bnAbs exhibited protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model in vivo. These bnAbs provide new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and provide a molecular basis for effective design of pan-sarbecovirus vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , COVID-19/prevenção & controle , Humanos , Glicoproteína da Espícula de Coronavírus
4.
Immunity ; 56(3): 669-686.e7, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36889306

RESUMO

Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against novel pandemic coronaviruses and to more effectively respond to SARS-CoV-2 variants. The emergence of Omicron and subvariants of SARS-CoV-2 illustrates the limitations of solely targeting the receptor-binding domain (RBD) of the spike (S) protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors, which targets a conserved S2 region in the betacoronavirus spike fusion machinery. Select bnAbs showed broad in vivo protection against all three deadly betacoronaviruses, SARS-CoV-1, SARS-CoV-2, and MERS-CoV, which have spilled over into humans in the past two decades. Structural studies of these bnAbs delineated the molecular basis for their broad reactivity and revealed common antibody features targetable by broad vaccination strategies. These bnAbs provide new insights and opportunities for antibody-based interventions and for developing pan-betacoronavirus vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Anticorpos Antivirais
5.
Proc Natl Acad Sci U S A ; 119(29): e2205784119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35767670

RESUMO

Many neutralizing antibodies (nAbs) elicited to ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through natural infection and vaccination have reduced effectiveness to SARS-CoV-2 variants. Here, we show that therapeutic antibody ADG20 is able to neutralize SARS-CoV-2 variants of concern (VOCs) including Omicron (B.1.1.529) as well as other SARS-related coronaviruses. We delineate the structural basis of this relatively escape-resistant epitope that extends from one end of the receptor binding site (RBS) into the highly conserved CR3022 site. ADG20 can then benefit from high potency through direct competition with ACE2 in the more variable RBS and interaction with the more highly conserved CR3022 site. Importantly, antibodies that are able to target this site generally neutralize a broad range of VOCs, albeit with reduced potency against Omicron. Thus, this conserved and vulnerable site can be exploited for the design of universal vaccines and therapeutic antibodies.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Epitopos/imunologia , Humanos , Testes de Neutralização , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
6.
J Virol ; 97(1): e0109122, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36475767

RESUMO

Getah virus (GETV) mainly causes disease in livestock and may pose an epidemic risk due to its expanding host range and the potential of long-distance dispersal through animal trade. Here, we used metagenomic next-generation sequencing (mNGS) to identify GETV as the pathogen responsible for reemerging swine disease in China and subsequently estimated key epidemiological parameters using phylodynamic and spatially-explicit phylogeographic approaches. The GETV isolates were able to replicate in a variety of cell lines, including human cells, and showed high pathogenicity in a mouse model, suggesting the potential for more mammal hosts. We obtained 16 complete genomes and 79 E2 gene sequences from viral strains collected in China from 2016 to 2021 through large-scale surveillance among livestock, pets, and mosquitoes. Our phylogenetic analysis revealed that three major GETV lineages are responsible for the current epidemic in livestock in China. We identified three potential positively selected sites and mutations of interest in E2, which may impact the transmissibility and pathogenicity of the virus. Phylodynamic inference of the GETV demographic dynamics identified an association between livestock meat consumption and the evolution of viral genetic diversity. Finally, phylogeographic reconstruction of GETV dispersal indicated that the sampled lineages have preferentially circulated within areas associated with relatively higher mean annual temperature and pig population density. Our results highlight the importance of continuous surveillance of GETV among livestock in southern Chinese regions associated with relatively high temperatures. IMPORTANCE Although livestock is known to be the primary reservoir of Getah virus (GETV) in Asian countries, where identification is largely based on serology, the evolutionary history and spatial epidemiology of GETV in these regions remain largely unknown. Through our sequencing efforts, we provided robust support for lineage delineation of GETV and identified three major lineages that are responsible for the current epidemic in livestock in China. We further analyzed genomic and epidemiological data to reconstruct the recent demographic and dispersal history of GETV in domestic animals in China and to explore the impact of environmental factors on its genetic diversity and its diffusion. Notably, except for livestock meat consumption, other pig-related factors such as the evolution of live pig transport and pork production do not show a significant association with the evolution of viral genetic diversity, pointing out that further studies should investigate the potential contribution of other host species to the GETV outbreak. Our analysis of GETV demonstrates the need for wider animal species surveillance and provides a baseline for future studies of the molecular epidemiology and early warning of emerging arboviruses in China.


Assuntos
Arbovírus , Genoma Viral , Filogenia , Animais , Humanos , Camundongos , Arbovírus/genética , China/epidemiologia , Genômica , Gado/virologia
7.
Nano Lett ; 23(12): 5842-5850, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36995289

RESUMO

Plasmonic polymeric nanoassemblies offer valuable opportunities in photoconversion applications. Localized surface plasmon mechanisms behind such nanoassemblies govern their functionalities under light illumination. However, an in-depth investigation at the single nanoparticle (NP) level is still challenging, especially when the buried interface is involved, due to the availability of suitable techniques. Here, we synthesized an anisotropic heterodimer composed of a self-assembled polymer vesicle (THPG) capped with a single gold NP, enabling an 8-fold enhancement in hydrogen generation compared to the nonplasmonic THPG vesicle. We explored the anisotropic heterodimer at the single particle level by employing advanced transmission electron microscopes, including one equipped with a femtosecond pulsed laser, which allows us to visualize the polarization- and frequency-dependent distribution of the enhanced electric near fields at the vicinity of Au cap and Au-polymer interface. These elaborated fundamental findings may guide designing new hybrid nanostructures tailored for plasmon-related applications.

8.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34951645

RESUMO

The ongoing SARS (severe acute respiratory syndrome)-CoV (coronavirus)-2 pandemic has exposed major gaps in our knowledge on the origin, ecology, evolution, and spread of animal coronaviruses. Porcine epidemic diarrhea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae that may have originated from bats and leads to significant hazards and widespread epidemics in the swine population. The role of local and global trade of live swine and swine-related products in disseminating PEDV remains unclear, especially in developing countries with complex swine production systems. Here, we undertake an in-depth phylogeographic analysis of PEDV sequence data (including 247 newly sequenced samples) and employ an extension of this inference framework that enables formally testing the contribution of a range of predictor variables to the geographic spread of PEDV. Within China, the provinces of Guangdong and Henan were identified as primary hubs for the spread of PEDV, for which we estimate live swine trade to play a very important role. On a global scale, the United States and China maintain the highest number of PEDV lineages. We estimate that, after an initial introduction out of China, the United States acted as an important source of PEDV introductions into Japan, Korea, China, and Mexico. Live swine trade also explains the dispersal of PEDV on a global scale. Given the increasingly global trade of live swine, our findings have important implications for designing prevention and containment measures to combat a wide range of livestock coronaviruses.


Assuntos
Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , China , Pandemias , Filogenia , Filogeografia , Vírus da Diarreia Epidêmica Suína/genética , Suínos , Doenças dos Suínos/epidemiologia , Estados Unidos
9.
Cancer Sci ; 114(10): 3884-3899, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37549641

RESUMO

Accumulating evidence indicates that circular RNAs (circRNAs) are inextricably linked to cancer development. However, the function and mechanism of nucleus-localized circRNAs in hepatocellular carcinoma (HCC) still require investigation. Here, qRT-PCR and receiver-operating characteristic curve were used to detect the expression and diagnostic potential of circSLC39A5 for HCC. The biological function of circSLC39A5 in HCC was investigated in vitro and in vivo. Nucleoplasmic separation assay, fluorescence in situ hybridization, RNA pulldown, RNA immunoprecipitation, the HDOCK Server, the NucleicNet Webserver, crosslinking-immunoprecipitation, MG132 treatment, and chromatin immunoprecipitation were utilized to explore the potential molecular mechanism of circSLC39A5 in HCC. The results showed that circSLC39A5 was downregulated in both HCC tissues and plasma and was associated with satellite nodules and lymph node metastasis/vascular invasion. CircSLC39A5 was stably expressed in plasma samples under different storage conditions, showing good diagnostic potential for HCC (AUC = 0.915). CircSLC39A5 inhibited proliferation, migration, and invasion, facilitated the apoptosis of HCC cells, and was associated with low expression of Ki67 and CD34. Remarkably, circSLC39A5 is mainly localized in the nucleus and binds to the transcription factor signal transducer and activator of transcription 1 (STAT1), affecting its stabilization and expression. STAT1 binds to the promoter of thymine DNA glycosylase (TDG). Overexpression of circSLC39A5 elevates TDG expression and reverses the increase of proliferating cell nuclear antigen (PCNA) expression and the overactive cell proliferation caused by TDG silencing. Our findings uncovered a novel plasma circRNA, circSLC39A5, which may be a potential circulating diagnostic marker for HCC, and the mechanism by which nucleus-localized circSLC39A5 exerts a transcriptional regulatory role in HCC by affecting STAT1/TDG/PCNA provides new insights into the mechanism of circRNAs.

10.
J Virol ; 96(6): e0175121, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-34986000

RESUMO

The emergence of new epidemic variants of alphaviruses poses a public health risk. It is associated with adaptive mutations that often cause increased pathogenicity. Getah virus (GETV), a neglected and re-emerging mosquito-borne alphavirus, poses threat to many domestic animals and probably even humans. At present, the underlying mechanisms of GETV pathogenesis are not well defined. We identified a residue in the E2 glycoprotein that is critical for viral adsorption to cultured cells and pathogenesis in vivo. Viruses containing an arginine instead of a lysine at residue 253 displayed enhanced infectivity in mammalian cells and diminished virulence in a mouse model of GETV disease. Experiments in cell culture show that heparan sulfate (HS) is a new attachment factor for GETV, and the exchange Lys253Arg improves virus attachment by enhancing binding to HS. The mutation also results in more effective binding to glycosaminoglycan (GAG), linked to low virulence due to rapid virus clearance from the circulation. Localization of residue 253 in the three-dimensional structure of the spike revealed several other basic residues in E2 and E1 in close vicinity that might constitute an HS-binding site different from sites previously identified in other alphaviruses. Overall, our study reveals that HS acts as the attachment factor of GETV and provides convincing evidence for an HS-binding determinant at residue 253 in the E2 glycoprotein of GETV, which contributes to infectivity and virulence. IMPORTANCE Due to decades of inadequate monitoring and lack of vaccines and specific treatment, a large number of people have been infected with alphaviruses. GETV is a re-emerging alphavirus that has the potential to infect humans. This specificity of the GETV disease, particularly its propensity for chronic musculoskeletal manifestations, underscores the need to identify the genetic determinants that govern GETV virulence in the host. Using a mouse model, we show that a single amino acid substitution at residue 253 in the E2 glycoprotein causes attenuation of the virus. Residue 253 might be part of a binding site for HS, a ubiquitous attachment factor on the cell surface. The substitution of Lys by Arg improves cell attachment of the virus in vitro and virus clearance from the blood in vivo by enhancing binding to HS. In summary, we have identified HS as a new attachment factor for GETV and the corresponding binding site in the E2 protein for the first time. Our research potentially improved understanding of the pathogenic mechanism of GETV and provided a potential target for the development of new attenuated vaccines and antiviral drugs.


Assuntos
Infecções por Alphavirus , Alphavirus , Substituição de Aminoácidos , Proteínas do Envelope Viral , Alphavirus/genética , Alphavirus/patogenicidade , Infecções por Alphavirus/virologia , Animais , Sítios de Ligação/genética , Células Cultivadas , Modelos Animais de Doenças , Heparitina Sulfato/metabolismo , Humanos , Camundongos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
11.
BMC Cancer ; 23(1): 630, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407915

RESUMO

OBJECTIVE: Multiple myeloma is a heterogeneous disorder and the intratumor genetic heterogeneity contributes to emergency of drug resistance. Dexamethasone has been used clinically for decades for MM. Nevertheless, their use is severely hampered by the risk of developing side effects and the occurrence of Dex resistance. LncRNA NEAT1 plays a oncogenic role and participates in drug resistance in many solid tumors. Therefore, we investigated a potential usefulness of this molecular as a biomarker for diagnosis of MM and possible correlations of NEAT1 expression with drug resistance and prognosis. METHODS: Bone marrow and peripheral blood mononuclear cells samples were collected from 60 newly diagnosed MM patients. The expression of NEAT1expression level were detected by quantitative real-time PCR analyses. The relationship about the expression levels of lncRNA with other clinical and cytogenetic features was analyzed. In addition, we measured to analysis the correlation between the expression of NEAT1 and Dex resistance in MM patients. RESULTS: It was found that the expression of NEAT1 is significantly higher in multiple myeloma patients compared to controls and does not change with other clinical features and cytogenetic features. We further discovered that overexpression of NEAT1 was associated with Dex resistance and a poor prognosis in MM patients. CONCLUSION: LncRNA NEAT1 has a significant value that might act as a promoting factor in the development of MM and may be severed as a diagnostic factor in MM. NEAT1 invovled in Dex resistance, which provide a new interpretation during the chemotherapy for MM.


Assuntos
Mieloma Múltiplo , RNA Longo não Codificante , Humanos , Biomarcadores , Leucócitos Mononucleares/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Prognóstico , RNA Longo não Codificante/metabolismo
12.
J Immunol ; 207(1): 344-351, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34183368

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike pseudotyped virus (PSV) assays are widely used to measure neutralization titers of sera and of isolated neutralizing Abs (nAbs). PSV neutralization assays are safer than live virus neutralization assays and do not require access to biosafety level 3 laboratories. However, many PSV assays are nevertheless somewhat challenging and require at least 2 d to carry out. In this study, we report a rapid (<30 min), sensitive, cell-free, off-the-shelf, and accurate assay for receptor binding domain nAb detection. Our proximity-based luciferase assay takes advantage of the fact that the most potent SARS-CoV-2 nAbs function by blocking the binding between SARS-CoV-2 and angiotensin-converting enzyme 2. The method was validated using isolated nAbs and sera from spike-immunized animals and patients with coronavirus disease 2019. The method was particularly useful in patients with HIV taking antiretroviral therapies that interfere with the conventional PSV assay. The method provides a cost-effective and point-of-care alternative to evaluate the potency and breadth of the predominant SARS-CoV-2 nAbs elicited by infection or vaccines.


Assuntos
Anticorpos Neutralizantes/análise , Testes de Neutralização , SARS-CoV-2/isolamento & purificação , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Neutralizantes/imunologia , Estudos de Coortes , Humanos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
13.
Phys Rev Lett ; 129(7): 070502, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36018707

RESUMO

In open quantum systems, the precision of metrology inevitably suffers from the noise. In Markovian open quantum dynamics, the precision can not be improved by using entangled probes although the measurement time is effectively shortened. However, it was predicted over one decade ago that in a non-Markovian one, the error can be significantly reduced by the quantum Zeno effect (QZE) [Chin, Huelga, and Plenio, Phys. Rev. Lett. 109, 233601 (2012)PRLTAO0031-900710.1103/PhysRevLett.109.233601]. In this work, we apply a recently developed quantum simulation approach to experimentally verify that entangled probes can improve the precision of metrology by the QZE. Up to n=7 qubits, we demonstrate that the precision has been improved by a factor of n^{1/4}, which is consistent with the theoretical prediction. Our quantum simulation approach may provide an intriguing platform for experimental verification of various quantum metrology schemes.

14.
Clin Sci (Lond) ; 136(12): 953-971, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35532376

RESUMO

Circular RNAs (circRNAs) play important roles in a variety of physiological and pathological processes. Researches demonstrated that circRNAs provided novel strategies for the prevention and treatment of IS. However, the biological function of hsa_circ_0045932 (circUSP36) has not been revealed yet. Here, we explored the effect of circUSP36 on IS and its mechanism. In the present study, we found that circUSP36 expression was significantly decreased in the peripheral blood of IS patients and was negatively correlated with the severity, infarct volume and poor prognosis of IS. Functionally, circUSP36 silencing inhibited cellular activity and proliferation and promoted apoptosis after oxygen-glucose deprivation/reperfusion (OGD/R) treatment, while circUSP36 overexpression reversed these cellular phenotypes in vitro. Adeno-associated virus (AAV)-mediated overexpression of circUSP36 attenuates brain injury and neurological deficit and promotes motor function recovery of transient middle cerebral artery occlusion (tMCAO) mice. Subsequently, the RNA antisense purification (RAP) and luciferase reporter assay confirmed that circUSP36 acts as a sponge to adsorb miR-139-3p, and miR-139-3p could bind and inhibit SMAD3 expression. Further rescue experiments showed that both miR-139-3p overexpression and SMAD3 silencing could abolish the antiapoptotic effect of circUSP36. In summary, we reveal for the first time that circUSP36 attenuates ischemic stroke injury through the miR-139-3p/SMAD3/Bcl2 signal axis, which make circUSP36 a potential therapeutic target for IS.


Assuntos
AVC Isquêmico , MicroRNAs , Traumatismo por Reperfusão , Animais , Apoptose/genética , Humanos , AVC Isquêmico/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Circular/genética , Traumatismo por Reperfusão/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo
15.
Biochemistry ; 60(27): 2153-2169, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34213308

RESUMO

A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against S protein from infectious virus, cultured in Vero cells. We find patterns that are conserved across all samples, and this can be associated with site-specific stalling of glycan maturation that acts as a highly sensitive reporter of protein structure. Molecular dynamics simulations of a fully glycosylated spike support a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.


Assuntos
COVID-19/genética , Conformação Proteica , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Animais , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Chlorocebus aethiops , Glicosilação , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
16.
Mol Biol Evol ; 37(9): 2641-2654, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407507

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown once again that coronavirus (CoV) in animals are potential sources for epidemics in humans. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogen of swine with a worldwide distribution. Here, we implemented and described an approach to analyze the epidemiology of PDCoV following its emergence in the pig population. We performed an integrated analysis of full genome sequence data from 21 newly sequenced viruses, along with comprehensive epidemiological surveillance data collected globally over the last 15 years. We found four distinct phylogenetic lineages of PDCoV, which differ in their geographic circulation patterns. Interestingly, we identified more frequent intra- and interlineage recombination and higher virus genetic diversity in the Chinese lineages compared with the USA lineage where pigs are raised in different farming systems and ecological environments. Most recombination breakpoints are located in the ORF1ab gene rather than in genes encoding structural proteins. We also identified five amino acids under positive selection in the spike protein suggesting a role for adaptive evolution. According to structural mapping, three positively selected sites are located in the N-terminal domain of the S1 subunit, which is the most likely involved in binding to a carbohydrate receptor, whereas the other two are located in or near the fusion peptide of the S2 subunit and thus might affect membrane fusion. Finally, our phylogeographic investigations highlighted notable South-North transmission as well as frequent long-distance dispersal events in China that could implicate human-mediated transmission. Our findings provide new insights into the evolution and dispersal of PDCoV that contribute to our understanding of the critical factors involved in CoVs emergence.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus/genética , Genoma Viral , Glicoproteína da Espícula de Coronavírus/genética , Doenças dos Suínos/epidemiologia , Proteínas Virais/genética , Animais , Evolução Biológica , China/epidemiologia , Coronavirus/classificação , Coronavirus/patogenicidade , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Variação Genética , Genômica , Humanos , Modelos Moleculares , Epidemiologia Molecular , Fases de Leitura Aberta , Filogenia , Filogeografia , Estrutura Secundária de Proteína , Recombinação Genética , Seleção Genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Suínos/virologia , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia , Proteínas Virais/metabolismo
17.
J Virol ; 94(15)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32404529

RESUMO

The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in a pandemic. Here, we used X-ray structures of human ACE2 bound to the receptor-binding domain (RBD) of the spike protein (S) from SARS-CoV-2 to predict its binding to ACE2 proteins from different animals, including pets, farm animals, and putative intermediate hosts of SARS-CoV-2. Comparing the interaction sites of ACE2 proteins known to serve or not serve as receptors allows the definition of residues important for binding. From the 20 amino acids in ACE2 that contact S, up to 7 can be replaced and ACE2 can still function as the SARS-CoV-2 receptor. These variable amino acids are clustered at certain positions, mostly at the periphery of the binding site, while changes of the invariable residues prevent S binding or infection of the respective animal. Some ACE2 proteins even tolerate the loss or acquisition of N-glycosylation sites located near the S interface. Of note, pigs and dogs, which are not infected or are not effectively infected and have only a few changes in the binding site, exhibit relatively low levels of ACE2 in the respiratory tract. Comparison of the RBD of S of SARS-CoV-2 with that from bat coronavirus strain RaTG13 (Bat-CoV-RaTG13) and pangolin coronavirus (Pangolin-CoV) strain hCoV-19/pangolin/Guangdong/1/2019 revealed that the latter contains only one substitution, whereas Bat-CoV-RaTG13 exhibits five. However, ACE2 of pangolin exhibits seven changes relative to human ACE2, and a similar number of substitutions is present in ACE2 of bats, raccoon dogs, and civets, suggesting that SARS-CoV-2 may not be especially adapted to ACE2 of any of its putative intermediate hosts. These analyses provide new insight into the receptor usage and animal source/origin of SARS-CoV-2.IMPORTANCE SARS-CoV-2 is threatening people worldwide, and there are no drugs or vaccines available to mitigate its spread. The origin of the virus is still unclear, and whether pets and livestock can be infected and transmit SARS-CoV-2 are important and unknown scientific questions. Effective binding to the host receptor ACE2 is the first prerequisite for infection of cells and determines the host range. Our analysis provides a framework for the prediction of potential hosts of SARS-CoV-2. We found that ACE2 from species known to support SARS-CoV-2 infection tolerate many amino acid changes, indicating that the species barrier might be low. Exceptions are dogs and especially pigs, which revealed relatively low ACE2 expression levels in the respiratory tract. Monitoring of animals is necessary to prevent the generation of a new coronavirus reservoir. Finally, our analysis also showed that SARS-CoV-2 may not be specifically adapted to any of its putative intermediate hosts.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral , Enzima de Conversão de Angiotensina 2 , Animais , Animais Domésticos , Betacoronavirus/metabolismo , COVID-19 , Quirópteros/virologia , Infecções por Coronavirus/metabolismo , Cães , Glicosilação , Interações Hospedeiro-Patógeno , Humanos , Modelos Animais , Pandemias , Animais de Estimação , Pneumonia Viral/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Guaxinins/virologia , SARS-CoV-2 , Alinhamento de Sequência , Análise de Sequência de Proteína , Suínos , Viverridae/virologia
18.
Microb Pathog ; 160: 105193, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34536503

RESUMO

As a novel member of the Orthomyxoviridae, influenza D virus (IDV) was firstly isolated from swine. However, cattle were found to serve as its primary reservoir. The study of IDV emergence can shed light into the dynamics of zoonotic infections and interspecies transmission. Although there is an increasing number of strains and sequenced IDV strains, their origin, epidemiology and evolutionary dynamics remain unclear. In this study, we reconstruct the diversity and evolutionary dynamics of IDVs. Molecular detection of swine tissue samples shows that six IDV positive samples were identified in the Eastern China. Phylogenetic analyses suggest three major IDV lineages designated as D/Japan, D/OK and D/660 as well as intermediate lineages. IDVs show strong association with geographical location indicating a high level of local transmission, which suggests IDVs tend to establish a local lineage of in situ evolution. In addition, the D/OK lineage widely circulates in swine in Eastern China, and all of the Chinese virus isolates form a distinct sub-clade (D/China sub-lineage). Furthermore, we identified important amino acids in the HEF gene under positive selection that might affect its receptor binding cavity relevant for its broader cell tropism. The combined results highlight that more attention should be paid to the potential threat of IDV to livestock and farming in China.


Assuntos
Doenças dos Bovinos , Infecções por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Animais , Bovinos , Evolução Molecular , Infecções por Orthomyxoviridae/veterinária , Filogenia , Suínos , Thogotovirus/genética
19.
Opt Express ; 28(4): 4611-4624, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121695

RESUMO

Channel noise is the main issue which reduces the efficiency of quantum communication. Here we present an efficient scheme for quantum key distribution against collective-rotation channel noise using polarization and transverse spatial mode of photons. Exploiting the two single-photon Bell states and two-photon hyperentangled Bell states in the polarization and the transverse spatial mode degrees of freedom (DOFs), the mutually unbiased bases can be encoded for logical qubits against the collective-rotation noise. Our scheme shows noiseless subspaces can be made up of two DOFs of two photons instead of multiple photons, which will reduce the resources required for noiseless subspaces and depress the photonic loss sensitivity. Moreover, the two single-photon Bell states and two-photon hyperentangled Bell states are symmetrical to the two photons, which means the relative order of the two photons is not required in our scheme, so the receiver only needs to measure the state of each photon, which makes our protocol easy to execute in experiment than the previous works.

20.
J Infect Dis ; 219(11): 1705-1715, 2019 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-30590733

RESUMO

BACKGROUND: Pseudorabies virus (PRV) causes Aujeszky's disease in pigs and can be transmitted to other mammals, including humans. In the current study, we systematically studied the interspecies transmission and evolutionary history of PRV. METHODS: We performed comprehensive analysis on the phylodynamics, selection, and structural biology to summarize the phylogenetic and adaptive evolution of PRV based on all available full-length and major glycoprotein sequences. RESULTS: PRV can be divided into 2 main clades with frequent interclade and intraclade recombination. Clade 2.2 (variant PRV) is currently the most prevalent genotype worldwide, and most commonly involved in cross-species transmission events (including humans). We also found that the population size of clade 2.2 has increased since 2011, and the effective reproduction number was >1 from 2011 to 2016, indicating that PRV may be still circulating in swine herds and is still a risk in relation with cross-species transmission in China. Of note, we identified amino acid sites in some important glycoproteins gB, gC, gD, and gE that may be associated with PRV adaptation to new hosts and immune escape to vaccines. CONCLUSIONS: Our study provides important genetic insight into the interspecies transmission and evolution of PRV within and between different hosts that warrant additional surveillance.


Assuntos
Variação Genética , Herpesvirus Suídeo 1/genética , Pseudorraiva/transmissão , Doenças dos Suínos/virologia , Animais , Evolução Biológica , China/epidemiologia , Genótipo , Glicoproteínas/genética , Herpesvirus Suídeo 1/patogenicidade , Herpesvirus Suídeo 1/fisiologia , Humanos , Filogenia , Pseudorraiva/epidemiologia , Pseudorraiva/virologia , Recombinação Genética , Suínos , Doenças dos Suínos/transmissão , Proteínas Virais/genética , Virulência , Zoonoses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA