Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Small ; 20(16): e2307579, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38044290

RESUMO

The design and fabrication of novel carbon hosts with high conductivity, accelerated electrochemical catalytic activities, and superior physical/chemical confinement on sulfur and its reaction intermediates polysulfides are essential for the construction of high-performance C/S cathodes for lithium-sulfur batteries (LSBs). In this work, a novel biofermentation coupled gel composite assembly technology is developed to prepare cross-linked carbon composite hosts consisting of conductive Rhizopus hyphae carbon fiber (RHCF) skeleton and lamellar sodium alginate carbon (SAC) uniformly implanted with polarized nanoparticles (V2O3, Ag, Co, etc.) with diameters of several nanometers. Impressively, the RHCF/SAC/V2O3 composites exhibit enhanced physical/chemical adsorption of polysulfides due to the synergistic effect between hierarchical pore structures, heteroatoms (N, P) doping, and polar V2O3 generation. Additionally, the catalytic conversion kinetics of cathodes are effectively improved by regulating the 3D carbon structure and optimizing the V2O3 catalyst. Consequently, the LSBs assembled with RHCF/SAC/V2O3-S cathode show exceptional cycle stability (capacity retention rate of 94.0% after 200 cycles at 0.1 C) and excellent rate performance (specific capacity of 578 mA h g-1 at 5 C). This work opens a new door for the fabrication of hyphae carbon composites via fermentation for electrochemical energy storage.

2.
Small ; 20(15): e2306381, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38013253

RESUMO

All-solid-state lithium metal batteries (LMBs) are regarded as one of the most viable energy storage devices and their comprehensive properties are mainly controlled by solid electrolytes and interface compatibility. This work proposes an advanced poly(vinylidene fluoride-hexafluoropropylene) based gel polymer electrolyte (AP-GPEs) via functional superposition strategy, which involves incorporating butyl acrylate and polyethylene glycol diacrylate as elastic optimization framework, triethyl phosphate and fluoroethylene carbonate as flameproof liquid plasticizers, and Li7La3Zr2O12 nanowires (LLZO-w) as ion-conductive fillers, endowing the designed AP-GPEs/LLZO-w membrane with high mechanical strength, excellent flexibility, low flammability, low activation energy (0.137 eV), and improved ionic conductivity (0.42 × 10-3 S cm-1 at 20 °C) due to continuous ionic transport pathways. Additionally, the AP-GPEs/LLZO-w membrane shows good safety and chemical/electrochemical compatibility with the lithium anode, owing to the synergistic effect of LLZO-w filler, flexible frameworks, and flame retardants. Consequently, the LiFePO4/Li batteries assembled with AP-GPEs/LLZO-w electrolyte exhibit enhanced cycling performance (87.3% capacity retention after 600 cycles at 1 C) and notable high-rate capacity (93.3 mAh g-1 at 5 C). This work proposes a novel functional superposition strategy for the synthesis of high-performance comprehensive GPEs for LMBs.

3.
Small ; : e2402862, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888118

RESUMO

Lithium-sulfur (Li-S) batteries are expected to be the next-generation energy storage system due to the ultrahigh theoretical energy density and low cost. However, the notorious shuttle effect of higher-order polysulfides and the uncontrollable lithium dendrite growth are the two biggest challenges for commercially viable Li-S batteries. Herein, these two main challenges are solved by in situ polymerization of bi-functional gel polymer electrolyte (GPE). The initiator (SiCl4) not only drives the polymerization of 1,3-dioxolane (DOL) but also induces the construction of a hybrid solid electrolyte interphase (SEI) with inorganic-rich compositions on the Li anode. In addition, diatomaceous earth (DE) is added and anchored in the GPE to obtain PDOL-SiCl4-DE electrolyte through in situ polymerization. Combined with density functional theory (DFT) calculations, the hybrid SEI provides abundant adsorption sites for the deposition of Li+, inhibiting the growth of lithium dendrites. Meanwhile, the shuttle effect is greatly alleviated due to the strong adsorption capacity of DE toward lithium polysulfides. Therefore, the Li/Li symmetric cell and Li-S full cell assembled with PDOL-SiCl4-DE exhibit excellent cycling stability. This study offers a valuable reference for the development of high performance and safe Li-S batteries.

4.
Small ; : e2401491, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751305

RESUMO

The design and fabrication of a lithiophilic skeleton are highly important for constructing advanced Li metal anodes. In this work, a new lithiophilic skeleton is reported by planting metal sulfides (e.g., Ni3S2) on vertical graphene (VG) via a facile ultrafast Joule heating (UJH) method, which facilitates the homogeneous distribution of lithiophilic sites on carbon cloth (CC) supported VG substrate with firm bonding. Ni3S2 nanoparticles are homogeneously anchored on the optimized skeleton as CC/VG@Ni3S2, which ensures high conductivity and uniform deposition of Li metal with non-dendrites. By means of systematic electrochemical characterizations, the symmetric cells coupled with CC/VG@Ni3S2 deliver a steady long-term cycle within 14 mV overpotential for 1800 h (900 cycles) at 1 mA cm-2 and 1 mAh cm-2. Meanwhile, the designed CC/VG@Ni3S2-Li||LFP full cell shows notable electrochemical performance with a capacity retention of 92.44% at 0.5 C after 500 cycles and exceptional rate performance. This novel synthesis strategy for metal sulfides on hierarchical carbon-based materials sheds new light on the development of high-performance lithium metal batteries (LMBs).

5.
Chemistry ; 30(19): e202304168, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38264940

RESUMO

"Carbon Peak and Carbon Neutrality" is an important strategic goal for the sustainable development of human society. Typically, a key means to achieve these goals is through electrochemical energy storage technologies and materials. In this context, the rational synthesis and modification of battery materials through new technologies play critical roles. Plasma technology, based on the principles of free radical chemistry, is considered a promising alternative for the construction of advanced battery materials due to its inherent advantages such as superior versatility, high reactivity, excellent conformal properties, low consumption and environmental friendliness. In this perspective paper, we discuss the working principle of plasma and its applied research on battery materials based on plasma conversion, deposition, etching, doping, etc. Furthermore, the new application directions of multiphase plasma associated with solid, liquid and gas sources are proposed and their application examples for batteries (e. g. lithium-ion batteries, lithium-sulfur batteries, zinc-air batteries) are given. Finally, the current challenges and future development trends of plasma technology are briefly summarized to provide guidance for the next generation of energy technologies.

6.
Small ; 19(42): e2303210, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37330662

RESUMO

The use of poly(1,3-dioxolane) (PDOL) electrolyte for lithium batteries has gained attention due to its high ionic conductivity, low cost, and potential for large-scale applications. However, its compatibility with Li metal needs improvement to build a stable solid electrolyte interface (SEI) toward metallic Li anode for practical lithium batteries. To address this concern, this study utilized a simple InCl3 -driven strategy for polymerizing DOL and building a stable LiF/LiCl/LiIn hybrid SEI, confirmed through X-ray photoelectron spectroscopy (XPS) and cryogenic-transmission electron microscopy (Cryo-TEM). Furthermore, density functional theory (DFT) calculations and finite element simulation (FES) verify that the hybrid SEI exhibits not only excellent electron insulating properties but also fast transport properties of Li+ . Moreover, the interfacial electric field shows an even potential distribution and larger Li+ flux, resulting in uniform dendrite-free Li deposition. The use of the LiF/LiCl/LiIn hybrid SEI in Li/Li symmetric batteries shows steady cycling for 2000 h, without experiencing a short circuit. The hybrid SEI also provided excellent rate performance and outstanding cycling stability in LiFePO4 /Li batteries, with a high specific capacity of 123.5 mAh g-1 at 10 C rate. This study contributes to the design of high-performance solid lithium metal batteries utilizing PDOL electrolytes.

7.
Small ; 19(24): e2300494, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36920095

RESUMO

Lithium-rich layered oxide (LRLO) materials have attracted significant attention due to their high specific capacity, low cost, and environmental friendliness. However, owing to its unique capacity activation mechanism, the release of lattice oxygen during the first charge process leads to a series of problems, such as severe voltage decay, poor cycle stability, and poor rate performance. Herein, a fluorinated quasi-solid-state electrolyte (QSSE) via a simple thermal polymerization method toward lithium metal batteries with LRLO materials is reported. The well-designed QSSE exhibits an ionic conductivity of 6.4 × 10-4 S cm-1 at 30 °C and a wide electrochemical stable window up to 5.6 V. Most importantly, XPS spectra demonstrate the generation of a LiF-rich electrode-electrolyte interface (EEI), where the in situ generated LiF provides strong protection against the structural degradation of LRLO materials and directs the uniform plating/stripping behaviors of lithium-ions to inhibit the formation of lithium dendrites. As a result, LRLO/QSSE/Li batteries exhibit excellent rate performance and demonstrate a large initial capacity for 209.7 mA h g-1 with a capacity retention of 80.8% after 200 cycles at 0.5C. This work provides a new insight for the LiF-rich EEI design of safe, high-performance quasi-solid-state lithium metal batteries.

8.
Small ; 19(24): e2208164, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36916700

RESUMO

Solid-state lithium-sulfur batteries (SSLSBs) have attracted tremendous research interest due to their large theoretical energy density and high safety, which are highly important indicators for the development of next-generation energy storage devices. Particularly, safety and "shuttle effect" issues originating from volatile and flammable liquid organic electrolytes can be fully mitigated by switching to a solid-state configuration. However, their road to thecommercial application is still plagued with numerous challenges, most notably the intrinsic electrochemical instability of solid-state electrolytes (SSEs) materials and their interfacial compatibility with electrodes and electrolytes. In this review, a critical discussion on the key issues and problems of different types of SSEs as well as the corresponding optimization strategies are first highlighted. Then, the state-of-the-art preparation methods and properties of different kinds of SSE materials, and their manufacture, characterization and performance in SSLSBs are summarized in detail. Finally, a scientific outlook for the future development of SSEs and the avenue to commercial application of SSLSBs is also proposed.

9.
Small ; 17(37): e2101326, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34331396

RESUMO

Argyrodite Li6 PS5 Cl with high Li+ conductivity is a promising material for solid-state electrolytes (SSEs) in all-solid-state lithium batteries (ASSLBs). However, the narrow electrochemical window of Li6 PS5 Cl limits its applications in ASSLBs with high energy densities, and those that consist of high-voltage cathode materials and metallic lithium anodes. Unstable lithium deposition and stripping at interfaces is also a factor that restricts its industrialization. Herein, the authors investigated the electrochemical stability of Li6 PS5 Cl using it as both the cathode and electrolyte. The Li6 PS5 Cl-C/Li6 PS5 Cl/Li cell and symmetric Li/Li6 PS5 Cl/Li cells failed after a certain number of cycles, and subsequently healed electrochemically. This failure/healing phenomenon recurred during the cycling process. The self-healing behavior is closely related to the electrochemical window, which suggests that it can be controlled by the charge-discharge voltage range. In-depth X-ray photoelectron spectroscopy, in situ Raman spectroscopy, and in situ electrochemical impedance spectroscopy revealed the reversible Li6 PS5 Cl decomposition and metallic lithium growth inside the electrolyte during the cycling process. This self-healing behavior is mainly attributed to the reciprocating lithium growth and reversible redox reaction of the Li6 PS5 Cl decomposition. The proposed self-healing mechanism is a key aspect for sulfide-based SSEs, guiding the interface modification, and material design of ASSLBs.

10.
Proc Natl Acad Sci U S A ; 114(15): 3821-3825, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348236

RESUMO

In this paper, we describe an approach to measuring enzyme activity based on the reconfiguration of complex emulsions. Changes in the morphology of these complex emulsions, driven by enzyme-responsive surfactants, modulate the transmission of light through a sample. Through this method we demonstrate how simple photodetector measurements may be used to monitor enzyme kinetics. This approach is validated by quantitative measurements of enzyme activity for three different classes of enzymes (amylase, lipase, and sulfatase), relying on two distinct mechanisms for coupling droplet morphology to enzyme activity (host-guest interactions with uncaging and molecular cleavage).


Assuntos
Amilases/metabolismo , Lipase/metabolismo , Microfluídica/instrumentação , Óptica e Fotônica , Sulfatases/metabolismo , Aspergillus/enzimologia , Candida/enzimologia , Emulsões , Cinética , Tensoativos
11.
Nanotechnology ; 30(14): 144001, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30620932

RESUMO

A novel, flexible non-precious-metal oxygen reduction reaction catalyst is fabricated by direct pyrolysis of carbon cloth decorated with an iron-coordinated aniline and pyrrole copolymer. The resultant Fe-N/C manifests superior activity, long-term stability in alkaline media and comparable activity in acidic electrolyte. The precursor carbon cloth modified with aniline and pyrrole copolymer provides high densities of carbon, nitrogen and iron-doping sites, which generates a great many active sites. Compared to the Pt/C catalyst, Fe-N/C pyrolyzed at 850 °C (Fe-N/C-850) shows excellent activity with onset and half-wave potentials of 17 mV and -174 mV in 0.1 M KOH, which are more activated than an iron-free catalyst (-29 mV and -235 mV) and comparable to those of Pt/C (28 mV and -237 mV) with the same loading. The electrocatalysis and reaction kinetics results demonstrate that Fe-N/C-850 will be a promising catalyst at low cost for applications in fuel cells.

12.
Curr Microbiol ; 76(12): 1387-1397, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31292680

RESUMO

Quorum sensing is a system of stimuli and response correlated to population density and involves in pathogen infection, colonization, and pathogenesis. Quorum quenching enzymes as quorum sensing inhibitors have been identified in a number of bacteria and been used to control by triggering the pathogenic phenotype. The marine bacteria of Pseudoalteromonas had wide activity of degrading AHLs as a type of signal molecule associated with quorum sensing. We screened many Pseudoalteromonas strains in large scale to explore genes of quorum quenching enzymes from the China seas by whole-genome sequencing rather than genomic library construction. Nine target strains were obtained and an acylases gene APTM01 from the strain MQS005 belonging to PvdQ type on sub-branch in phylogenetic tree. And the heterogenous host containing the vector with target gene could degrade C10-HSL, C12-HSL and OC12-HSL. The obtained AHL acylase gene would be a candidate quorum quenching gene to apply in some fields. We identified that the strains of Pseudoalteromonas have wide AHL-degrading ability depending on quorum quenching. The strains would be a resource to explore new quorum quenching enzymes.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Lactonas/metabolismo , Pseudoalteromonas/enzimologia , Água do Mar/microbiologia , Amidoidrolases/química , Amidoidrolases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , China , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Lactonas/química , Filogenia , Pseudoalteromonas/genética , Pseudoalteromonas/isolamento & purificação , Pseudoalteromonas/fisiologia , Percepção de Quorum , Alinhamento de Sequência , Especificidade por Substrato
13.
Molecules ; 25(1)2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905777

RESUMO

Natural deep eutectic solvents (NaDESs) are recently developed green solvent alternatives to conventional fossil solvents. The present work systematically screened 22 different NaDESs for the ultrasonic-assisted extraction of bioactive components from Salvia miltiorrhiza (SM), a widely used traditional Chinese medical plant. The suitable solvent and extraction condition were optimized in a two-round screening. In comparison with fossil solvents, NaDESs, especially L-proline-lactic acid (L-Pro-Lac) showed significant advantages in the extraction of salvianolic acid B (SAB), tanshinone IIA (TIIA) and cryptotanshinone (CYT). The optimized yields of the three targeting compounds were 42.05, 1.485 and 0.839 mg/g, respectively. The present method was also applied to the pretreatment of SM samples from different geographic origins. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities of NaDES extracts were determined in the study to prove the feasibility of NaDES in bioactive component extraction. The application of NaDESs in the extraction of both hydrophilic and hydrophobic small molecules from SM is proved to be a green and efficient method for pretreatment of herbal materials.


Assuntos
Fracionamento Químico , Química Verde , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Salvia miltiorrhiza/química , Solventes/química , Ondas Ultrassônicas , Fracionamento Químico/métodos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Estrutura Molecular , Extratos Vegetais/farmacologia
14.
J Sep Sci ; 37(24): 3753-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25311209

RESUMO

A magnetic molecularly imprinted fluorescent sensor for the sensitive and convenient determination of ciprofloxacin or norfloxacin in human urine was synthesized and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, ultraviolet/visible spectroscopy, and fluorescence spectroscopy. Both cadmium telluride quantum dots and ferroferric oxide nanoparticles are introduced into the polymer for the rapid separation and detection of the target molecules. The synthesized molecularly imprinted polymers were applied to detect ciprofloxacin or its structural analog norfloxacin in human urine with the detection limit 130 ng/mL. A computational study was developed to evaluate the template-monomer geometry and interaction energy in the polymerization mixture to determine the reaction molar ratio of the template and monomer molecules.


Assuntos
Ciprofloxacina/urina , Fenômenos Magnéticos , Impressão Molecular , Nanosferas/química , Norfloxacino/urina , Dióxido de Silício/química , Compostos de Cádmio/química , Compostos Férricos/química , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Tamanho da Partícula , Polímeros/síntese química , Polímeros/química , Pontos Quânticos , Propriedades de Superfície , Telúrio/química
15.
ChemSusChem ; : e202400159, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581393

RESUMO

Uneven lithium (Li) metal deposition typically results in uncontrollable dendrite growth, which renders an unsatisfactory cycling stability and coulombic efficiency (CE) of Li metal batteries (LMBs), preventing their practical application. Herein, a novel carbon cloth with the modification of ZnO nanosheets (ZnO@CC) is fabricated for LMBs. The as-prepared ZnO@CC with a cross-linked network significantly reduces the local current density, and the design of ZnO nanosheets can promote the uniform deposition of Li metal as lithiophilic sites. As a result, the Li metal anodes (LMAs) based on ZnO@CC (ZnO@CC@Li) enables a long cycle life over 640 hours with a low overpotential of 65 mV at a current density of 4 mA cm-2 with a capacity of 1 mAh cm-2 in the symmetric cell. Moreover, when coupling the ZnO@CC@Li with a LiFePO4 cathode, the assembled full cell exhibits excellent long cycle and rate performance, highlighting its promising practical application prospect.

16.
ChemSusChem ; : e202400840, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924365

RESUMO

Unfavorable parasitic reactions between the Ni-rich layered oxide cathode and the sulfide solid electrolyte have plagued the realization of all-solid-state rechargeable Li batteries. The accumulation of inactive by-products (P2Sx, S, POxn-and SOxn-) at the cathode-sulfide interface impedes fast Li-ion transfer, which accounts for sluggish reaction kinetics and significant loss of cathode capacity. Herein, we proposed an easily scalable approach to stabilize the cathode electrochemistry via coating the cathode particles by a uniform, Li+-conductive plastic-crystal electrolyte nanolayer on their surface. The electrolyte, which simply consists of succinonitrile and Li bis(trifluoromethanesulphonyl)imide, serves as an interfacial buffer to effectively suppress the adverse phase transition in highly delithiated cathode materials, and the loss of lattice oxygen and generation of inactive oxygenated by-products at the cathode-sulfide interface. Consequently, an all-solid-state rechargeable Li battery with the modified cathode delivers high specific capacities of 168 mAh g-1 at 0.1 C and a high capacity retention >80% after 100 cycles. Our work sheds new light on rational design of electrode-electrolyte interface for the next-generation high-energy batteries.

17.
ACS Appl Mater Interfaces ; 16(1): 898-906, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38154079

RESUMO

Titanium dioxide (TiO2) has been widely used as an alternative anodic material for lithium-ion batteries (LIBs) due to its ultrahigh capacity retention and long cycle lifespan. However, the restriction of lithium insertion, intrinsically poor electronic conductivity, and sluggish lithium ionic kinetics of bulk TiO2 hinder their specific capacity and rate performance. Herein, LiTiO2 nanoparticles (NPs) are synthesized via a facile ball milling method by the reaction of anatase TiO2 with LiH. The as-prepared LiTiO2 NPs have strong structural stability and a "zero strain" effect during the repeated intercalation/deintercalation, even at low potential. As anodic materials for LIBs, LiTiO2 NPs exhibit a superior rate performance of ∼100 mA h g-1 at 10C (3350 mA g-1) with a capacity retention of 100% after 1000 cycles, which is 5 times higher than that of the original commercial anatase TiO2 powder. The higher specific capacity of LiTiO2 NPs is attributed to the increased conversion of Ti3+ to Ti2+ on the porous surface of LiTiO2 NPs, which provides a more capacitive contribution. This study not only provides a new fabrication approach toward Ti-based anodes for ultrafast LIBs but also underscores the potential importance of embedding lithium into transition metal oxides as a strategy for boosting their electrochemical performance.

18.
ACS Appl Mater Interfaces ; 16(20): 26288-26298, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38725121

RESUMO

Sulfide-based all-solid-state lithium batteries (ASSLBs) have attracted unprecedented attention in the past decade due to their excellent safety performance and high energy storage density. However, the sulfide solid-state electrolytes (SSEs) as the core component of ASSLBs have a certain stiffness, which inevitably leads to the formation of pores and cracks during the production process. In addition, although sulfide SSEs have high ionic conductivity, the electrolytes are unstable to lithium metal and have non-negligible electronic conductivity, which severely limits their practical applications. Herein, a grain boundary electronic insulation strategy through in situ polymer encapsulation is proposed for this purpose. A polymer layer with insulating properties is applied to the surface of the Li5.5PS4.5Cl1.5 (LPSC) electrolyte particles by simple ball milling. In this way, we can not only achieve a dense electrolyte pellet but also improve the stability of the Li metal anode and reduce the electronic conductivity of LPSC. This strategy of electronic isolation of the grain boundaries enables stable deposition/stripping of the modified electrolyte for more than 2000 h at a current density of 0.5 mA cm-1 in a symmetrical Li/Li cell. With this strategy, a full cell with Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) as the cathode shows high performance including high specific capacity, improved high-rate capability, and long-term stability. Therefore, this study presents a new strategy to achieve high-performance sulfide SSEs.

19.
Adv Healthc Mater ; : e2303688, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481054

RESUMO

Bacterial infections in wounds continue to be a major challenge in clinical settings worldwide and represent a significant threat to human health. This work proposes novel expandable and versatile methods for solidifying sodium alginate (SA) with metal ions (such as Fe3+ , Co2+ , Ni2+ , Cu2+ , and Zn2+ ) to create Metal-Alginate (M-Alg) hydrogel with adjustable morphology, composition, and microstructure. It conforms to the wound site, protects against second infection, reduces inflammation, and promotes the healing of infected wounds. Among these hydrogels, Cu-Alginate (Cu-Alg) shows excellent sterilization effect and good efficacy against both gram-positive and gram-negative bacteria, including multidrug-resistant (MDR) strains such as Methicillin-resistant Staphylococcus aureus (MRSA) and Carbapenem-resistant Klebsiella pneumoniae (CRKP) due to its dual antibacterial mechanisms: contact-killing and reactive oxygen species (ROS) burst. Importantly, it exhibits low cytotoxicity and biodegradability. This simple and cost-effective gel-based system has the potential to introduce an innovative approach to the management of wound infection and offers promising new perspectives for the advancement of wound care practice.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38623904

RESUMO

All-solid-state lithium batteries (ASSLBs) are attracting tremendous attention due to their improved safety and higher energy density. However, the use of a metallic lithium anode poses a major challenge due to its low stability and processability. Instead, the graphite anode exhibits high reversibility for the insertion/deinsertion of lithium ions, giving ASSLBs excellent cyclic stability but a lower energy density. To increase the energy density of ASSLBs with the graphite anode, it is necessary to lower the negative/positive (N/P) capacity ratio and to increase the charging voltage. These strategies bring new challenges to lithium metal plating and dendrite growth. Here, a nano-Ag-modified graphite composite electrode (Ag@Gr) is developed to overcome these shortcomings for Li5.5PS4.5Cl1.5-based ASSLBs. The Ag@Gr composite exhibits a strong ability to inhibit lithium metal plating and fast lithium-ion transport kinetics. Ag nanoparticles can accommodate excess Li, and the as-obtained Li-Ag alloy enhances the kinetics of the composite electrode. The ASSLB with the Li(Ni0.8Co0.1Mn0.1)O2 cathode and Ag@Gr anode achieves an energy density of 349 W h kg-1. The full cell using Ag@Gr with an N/P ratio of 0.6 also highlights the rate performance. This work provides a simple and effective method to regulate the charge transport kinetics of graphite anodes and improve the cyclic performance and energy density of ASSLBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA