Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 616(7958): 798-805, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046089

RESUMO

Oncogene amplification on extrachromosomal DNA (ecDNA) drives the evolution of tumours and their resistance to treatment, and is associated with poor outcomes for patients with cancer1-6. At present, it is unclear whether ecDNA is a later manifestation of genomic instability, or whether it can be an early event in the transition from dysplasia to cancer. Here, to better understand the development of ecDNA, we analysed whole-genome sequencing (WGS) data from patients with oesophageal adenocarcinoma (EAC) or Barrett's oesophagus. These data included 206 biopsies in Barrett's oesophagus surveillance and EAC cohorts from Cambridge University. We also analysed WGS and histology data from biopsies that were collected across multiple regions at 2 time points from 80 patients in a case-control study at the Fred Hutchinson Cancer Center. In the Cambridge cohorts, the frequency of ecDNA increased between Barrett's-oesophagus-associated early-stage (24%) and late-stage (43%) EAC, suggesting that ecDNA is formed during cancer progression. In the cohort from the Fred Hutchinson Cancer Center, 33% of patients who developed EAC had at least one oesophageal biopsy with ecDNA before or at the diagnosis of EAC. In biopsies that were collected before cancer diagnosis, higher levels of ecDNA were present in samples from patients who later developed EAC than in samples from those who did not. We found that ecDNAs contained diverse collections of oncogenes and immunomodulatory genes. Furthermore, ecDNAs showed increases in copy number and structural complexity at more advanced stages of disease. Our findings show that ecDNA can develop early in the transition from high-grade dysplasia to cancer, and that ecDNAs progressively form and evolve under positive selection.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Carcinogênese , DNA , Progressão da Doença , Detecção Precoce de Câncer , Neoplasias Esofágicas , Humanos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Estudos de Casos e Controles , DNA/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinogênese/genética , Sequenciamento Completo do Genoma , Estudos de Coortes , Biópsia , Oncogenes , Imunomodulação , Variações do Número de Cópias de DNA , Amplificação de Genes , Detecção Precoce de Câncer/métodos
2.
Nat Commun ; 14(1): 276, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650165

RESUMO

Ultraviolet A light is commonly emitted by UV-nail polish dryers with recent reports suggesting that long-term use may increase the risk for developing skin cancer. However, no experimental evaluation has been conducted to reveal the effect of radiation emitted by UV-nail polish dryers on mammalian cells. Here, we show that irradiation by a UV-nail polish dryer causes high levels of reactive oxygen species, consistent with 8-oxo-7,8-dihydroguanine damage and mitochondrial dysfunction. Analysis of somatic mutations reveals a dose-dependent increase of C:G>A:T substitutions in irradiated samples with mutagenic patterns similar to mutational signatures previously attributed to reactive oxygen species. In summary, this study demonstrates that radiation emitted by UV-nail polish dryers can both damage DNA and permanently engrave mutations on the genomes of primary mouse embryonic fibroblasts, human foreskin fibroblasts, and human epidermal keratinocytes.


Assuntos
Dano ao DNA , Fibroblastos , Raios Ultravioleta , Animais , Humanos , Camundongos , Queratinócitos/efeitos da radiação , Mamíferos , Mutação/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta/efeitos adversos , Unhas
3.
JCI Insight ; 7(18)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36134663

RESUMO

Although Barrett's metaplasia of the esophagus (BE) is the only known precursor lesion to esophageal adenocarcinomas (EACs), drivers of cellular transformation in BE remain incompletely understood. We use an artificial intelligence-guided network approach to study EAC initiation and progression. Key predictions are subsequently validated in a human organoid model, in patient-derived biopsy specimens of BE, a case-control study of genomics of BE progression, and in a cross-sectional study of 113 patients with BE and EACs. Our model classified healthy esophagus from BE and BE from EACs in several publicly available gene expression data sets (n = 932 samples). The model confirmed that all EACs must originate from BE and pinpointed a CXCL8/IL8↔neutrophil immune microenvironment as a driver of cellular transformation in EACs and gastroesophageal junction adenocarcinomas. This driver is prominent in White individuals but is notably absent in African Americans (AAs). Network-derived gene signatures, independent signatures of neutrophil processes, CXCL8/IL8 expression, and an absolute neutrophil count (ANC) are associated with risk of progression. SNPs associated with changes in ANC by ethnicity (e.g., benign ethnic neutropenia [BEN]) modify that risk. Findings define a racially influenced immunological basis for cell transformation and suggest that BEN in AAs may be a deterrent to BE→EAC progression.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , Adenocarcinoma/patologia , Inteligência Artificial , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Estudos de Casos e Controles , Transformação Celular Neoplásica/genética , Estudos Transversais , Neoplasias Esofágicas/patologia , Junção Esofagogástrica/metabolismo , Junção Esofagogástrica/patologia , Etnicidade , Humanos , Interleucina-8/genética , Microambiente Tumoral
4.
Cell Genom ; 2(11): None, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36388765

RESUMO

Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues.

5.
Cell Rep ; 34(4): 108670, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503434

RESUMO

Inflammation-dependent base deaminases promote therapeutic resistance in many malignancies. However, their roles in human pre-leukemia stem cell (pre-LSC) evolution to acute myeloid leukemia stem cells (LSCs) had not been elucidated. Comparative whole-genome and whole-transcriptome sequencing analyses of FACS-purified pre-LSCs from myeloproliferative neoplasm (MPN) patients reveal APOBEC3C upregulation, an increased C-to-T mutational burden, and hematopoietic stem and progenitor cell (HSPC) proliferation during progression, which can be recapitulated by lentiviral APOBEC3C overexpression. In pre-LSCs, inflammatory splice isoform overexpression coincides with APOBEC3C upregulation and ADAR1p150-induced A-to-I RNA hyper-editing. Pre-LSC evolution to LSCs is marked by STAT3 editing, STAT3ß isoform switching, elevated phospho-STAT3, and increased ADAR1p150 expression, which can be prevented by JAK2/STAT3 inhibition with ruxolitinib or fedratinib or lentiviral ADAR1 shRNA knockdown. Conversely, lentiviral ADAR1p150 expression enhances pre-LSC replating and STAT3 splice isoform switching. Thus, pre-LSC evolution to LSCs is fueled by primate-specific APOBEC3C-induced pre-LSC proliferation and ADAR1-mediated splicing deregulation.


Assuntos
Inflamação/imunologia , Leucemia Mieloide Aguda/fisiopatologia , Proliferação de Células , Humanos , Células-Tronco Neoplásicas/metabolismo
6.
Nat Genet ; 53(11): 1553-1563, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663923

RESUMO

Esophageal squamous cell carcinoma (ESCC) shows remarkable variation in incidence that is not fully explained by known lifestyle and environmental risk factors. It has been speculated that an unknown exogenous exposure(s) could be responsible. Here we combine the fields of mutational signature analysis with cancer epidemiology to study 552 ESCC genomes from eight countries with varying incidence rates. Mutational profiles were similar across all countries studied. Associations between specific mutational signatures and ESCC risk factors were identified for tobacco, alcohol, opium and germline variants, with modest impacts on mutation burden. We find no evidence of a mutational signature indicative of an exogenous exposure capable of explaining differences in ESCC incidence. Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC)-associated mutational signatures single-base substitution (SBS)2 and SBS13 were present in 88% and 91% of cases, respectively, and accounted for 25% of the mutation burden on average, indicating that APOBEC activation is a crucial step in ESCC tumor development.


Assuntos
Neoplasias Esofágicas/epidemiologia , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/epidemiologia , Carcinoma de Células Escamosas do Esôfago/genética , Mutação , Desaminases APOBEC/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Aldeído-Desidrogenase Mitocondrial/genética , Brasil/epidemiologia , China/epidemiologia , Feminino , Humanos , Incidência , Irã (Geográfico)/epidemiologia , Masculino , Pessoa de Meia-Idade , Proteína Supressora de Tumor p53/genética , Reino Unido/epidemiologia , Sequenciamento Completo do Genoma
7.
Nat Commun ; 10(1): 5546, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804466

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Tobacco use is the main risk factor for HNSCC, and tobacco-associated HNSCCs have poor prognosis and response to available treatments. Recently approved anti-PD-1 immune checkpoint inhibitors showed limited activity (≤20%) in HNSCC, highlighting the need to identify new therapeutic options. For this, mouse models that accurately mimic the complexity of the HNSCC mutational landscape and tumor immune environment are urgently needed. Here, we report a mouse HNSCC model system that recapitulates the human tobacco-related HNSCC mutanome, in which tumors grow when implanted in the tongue of immunocompetent mice. These HNSCC lesions have similar immune infiltration and response rates to anti-PD-1 (≤20%) immunotherapy as human HNSCCs. Remarkably, we find that >70% of HNSCC lesions respond to intratumoral anti-CTLA-4. This syngeneic HNSCC mouse model provides a platform to accelerate the development of immunotherapeutic options for HNSCC.


Assuntos
Carcinoma de Células Escamosas/terapia , Neoplasias de Cabeça e Pescoço/terapia , Imunoterapia/métodos , Ipilimumab/uso terapêutico , Neoplasias Bucais/terapia , Animais , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma de Células Escamosas/induzido quimicamente , Linhagem Celular Tumoral , Modelos Animais de Doenças , Neoplasias de Cabeça e Pescoço/induzido quimicamente , Humanos , Camundongos , Neoplasias Bucais/induzido quimicamente , Nicotiana/efeitos adversos
9.
Oncotarget ; 9(97): 36914-36928, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30651925

RESUMO

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) binds to death receptors and induces apoptosis in various cancer cell lines while sparing normal cells. Recombinant TRAIL has shown good safety and efficacy profiles in preclinical cancer models. However, clinical success has been limited due to poor PK and development of resistance to death receptor-induced apoptosis. We have addressed these issues by creating a fusion protein of TRAIL and arginine deiminase (ADI). The fusion protein benefits from structural and functional synergies between its two components and has an extended half-life in vivo. ADI downregulates survivin, upregulates DR5 receptor and sensitizes cancer cells to TRAIL induced apoptosis. ADI-TRAIL fusion protein was efficacious in a number of cell lines and synergized with some standard of care drugs. In an HCT116 xenograft model ADI-TRAIL localized to the tumor and induced dose-dependent tumor regression, the fusion protein was superior to rhTRAIL administered at the same molar amounts.

10.
Oncotarget ; 8(35): 58948-58963, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28938609

RESUMO

PEGylated arginine deiminase (ADI-PEG 20) is being investigated in clinical studies in arginine auxotrophic cancers and is well-tolerated. The anti-tumor properties of ADI-PEG 20 have been extensively investigated - ADI-PEG 20 inhibits the growth of auxotrophic cancers in vitro and in vivo - however, its impact on immune cells is largely unknown. Here we report the potential impact of ADI-PEG 20 on the tumor immune microenvironment. ADI-PEG 20 induced immunosuppressive programmed death-ligand 1 expression on some cancer cells in vitro, but the magnitude of the increase was cell line dependent and in most relatively small. Using healthy donor human peripheral blood mononuclear cells (PBMCs) we discovered that when present during initiation of T cell activation (but not later on) ADI-PEG 20 can inhibit their differentiation after early activation stage manifested by the expression of CD69 marker. In vivo, ADI-PEG 20 induced tumor T-cell infiltration in a poorly immunogenic syngeneic mouse melanoma B16-F10 model and reduced its growth as a single agent or when combined with anti-PD-1 mAb. It was also effective by itself or in combination with anti-PD-L1 mAb in CT26 colon carcinoma syngeneic model.

11.
Mol Biol Cell ; 28(10): 1361-1378, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28331073

RESUMO

The organization of the microtubule cytoskeleton is dictated by microtubule nucleators or organizing centers. Toxoplasma gondii, an important human parasite, has an array of 22 regularly spaced cortical microtubules stemming from a hypothesized organizing center, the apical polar ring. Here we examine the functions of the apical polar ring by characterizing two of its components, KinesinA and APR1, and show that its putative role in templating can be separated from its mechanical stability. Parasites that lack both KinesinA and APR1 (ΔkinesinAΔapr1) are capable of generating 22 cortical microtubules. However, the apical polar ring is fragmented in live ΔkinesinAΔapr1 parasites and is undetectable by electron microscopy after detergent extraction. Disintegration of the apical polar ring results in the detachment of groups of microtubules from the apical end of the parasite. These structural defects are linked to a diminished ability of the parasite to move and invade host cells, as well as decreased secretion of effectors important for these processes. Together the findings demonstrate the importance of the structural integrity of the apical polar ring and the microtubule array in the Toxoplasma lytic cycle, which is responsible for massive tissue destruction in acute toxoplasmosis.


Assuntos
Centro Organizador dos Microtúbulos/fisiologia , Toxoplasma/fisiologia , Animais , Citoesqueleto/fisiologia , Humanos , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Parasitos/metabolismo , Parasitos/fisiologia , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo
12.
Mol Biol Cell ; 27(3): 549-71, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26680740

RESUMO

Although all microtubules within a single cell are polymerized from virtually identical subunits, different microtubule populations carry out specialized and diverse functions, including directional transport, force generation, and cellular morphogenesis. Functional differentiation requires specific targeting of associated proteins to subsets or even subregions of these polymers. The cytoskeleton of Toxoplasma gondii, an important human parasite, contains at least five distinct tubulin-based structures. In this work, we define the differential localization of proteins along the cortical microtubules of T. gondii, established during daughter biogenesis and regulated by protein expression and exchange. These proteins distinguish cortical from mitotic spindle microtubules, even though the assembly of these subsets is contemporaneous during cell division. Finally, proteins associated with cortical microtubules collectively protect the stability of the polymers with a remarkable degree of functional redundancy.


Assuntos
Microtúbulos/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Feminino , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Microtúbulos/ultraestrutura , Dados de Sequência Molecular , Ligação Proteica , Estabilidade Proteica , Transporte Proteico , Proteínas de Protozoários/ultraestrutura , Toxoplasma/ultraestrutura , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA