Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38257216

RESUMO

Defatted cottonseed meal (CSM), the residue of cottonseeds after oil extraction, is a major byproduct of the cotton industry. Converting CSM to biochar and utilizing the goods in agricultural and environmental applications may be a value-added, sustainable approach to recycling this byproduct. In this study, raw CSM was transformed into biochar via complete batch slow pyrolysis at 300, 350, 400, 450, 500, 550, and 600 °C. Thermochemical transformation of phosphorus (P) in CSM during pyrolysis was explored. Fractionation, lability, and potential bioavailability of total P (TP) in CSM-derived biochars were evaluated using sequential and batch chemical extraction techniques. The recovery of feed P in biochar was nearly 100% at ≤550 °C and was reduced to <88% at 600 °C. During pyrolysis, the organic P (OP) molecules predominant in CSM were transformed into inorganic P (IP) forms, first to polyphosphates and subsequently to orthophosphates as promoted by a higher pyrolysis temperature. Conversion to biochar greatly reduced the mobility, lability, and bioavailability of TP in CSM. The biochar TP consisted of 9.3-17.9% of readily labile (water-extractable) P, 10.3-24.1% of generally labile (sequentially NaHCO3-extractable) P, 0.5-2.8% of moderately labile (sequentially NaOH-extractable) P, 17.0-53.8% of low labile (sequentially HCl-extractable) P, and 17.8-47.5% of residual (unextractable) P. Mehlich-3 and 1 M HCl were effective batch extraction reagents for estimating the "readily to mid-term" available and the "overall" available P pools of CSM-derived biochars, respectively. The biochar generated at 450 °C exhibited the lowest proportions of readily labile P and residual P compounds, suggesting 450 °C as the optimal pyrolysis temperature to convert CSM to biochar with maximal P bioavailability and minimal runoff risk.


Assuntos
Carvão Vegetal , Óleo de Sementes de Algodão , Fósforo , Humanos , Temperatura , Pirólise , Febre , Polifosfatos
2.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838586

RESUMO

Cottonseed is a natural product of cotton (Gossypium spp.) crops. This work evaluated the oxidative stability of cottonseed butters through accelerated autoxidation by storage at 60 °C for 25 days. Three oxidative stability parameter values (peroxide value, p-anisidine value, and total oxidation value) were monitored over the storage time. These chemical measurements revealed that the storage stability of the butter products was dominated by primary oxidation of lipid (oil) components, while the secondary oxidation levels were relatively unchanged over the storage time. An analysis of the tocopherols (natural oxidants in cottonseed) suggested not only the protection function of the molecules against oxidation of the cottonseed butter during storage, but also the dynamic mechanism against the primary oxidation of lipid components. Attenuated total reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR) data confirmed no changes in the major C functional groups of cottonseed butters over the storage time. On the other hand, characteristic minor peaks of conjugated dienes and trienes related to lipid oxidation were impacted by the accelerated storage. As each day of accelerated oxidation at 60 °C is equivalent to 16 days of storage at 20 °C, observations in this work should have reflected the oxidative stability behaviors of the cottonseed butters after about 13 months of shelf storage under ambient storage conditions. Thus, these data that were collected under the accelerated oxidation testing would be useful not only to create a better understanding of the autooxidation mechanism of lipid molecules in cottonseed butters, but also in developing or recommending appropriate storage conditions for cottonseed end products to prevent them from quality degradation.


Assuntos
Manteiga , Óleo de Sementes de Algodão , Óleo de Sementes de Algodão/química , Oxirredução , Antioxidantes/química , Estresse Oxidativo
3.
Molecules ; 28(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241921

RESUMO

Cottonseed is the second major product of cotton (Gossypium spp.) crops after fiber. Thus, the characterization and valorization of cottonseed are important parts of cotton utilization research. In this work, the nonpolar and polar fractions of glanded (Gd) cottonseed were sequentially extracted by 100% hexane and 80% ethanol aqueous solutions and subjected to 13C and 1H nuclear magnetic resonance (NMR) spectroscopy and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), respectively. The nonpolar (crude oil) extracts showed the characteristic NMR peak features of edible plant oils with the absence of ω-3 linolenic acid. Quantitative analysis revealed the percentage of polyunsaturated, monounsaturated, and saturated fatty acids as 48.7%, 16.9%, and 34.4%, respectively. Both general unsaturated fatty acid features and some specific olefinic compounds (e.g., oleic, linolenic, and gondonic acids) were found in the nonpolar fraction. In the polar extracts, FT-ICR MS detected 1673 formulas, with approximately 1/3 being potential phenolic compounds. Both the total and phenolic formulas fell mainly in the categories of lipid, peptide-like, carbohydrate, and lignin. A literature search and comparison further identifies some of these formulas as potential bioactive compounds. For example, one compound [2,5-dihydroxy-N'-(2,3,4-trihydroxybenzylidene) benzohydrazide] identified in the polar extracts is likely responsible for the anticancer function observed when used on human breast cancer cell lines. The chemical profile of the polar extracts provides a formulary for the exploration of bioactive component candidates derived from cottonseed for nutritive, health, and medical applications.


Assuntos
Óleo de Sementes de Algodão , Gossypium , Humanos , Óleo de Sementes de Algodão/química , Espectrometria de Massas , Ácidos Graxos , Extratos Vegetais
4.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838575

RESUMO

Food allergy is a potentially life-threatening health concern caused by immunoglobulin E (IgE) antibodies that mistakenly recognize normally harmless food proteins as threats. Peanuts and tree nuts contain several seed storage proteins that commonly act as allergens. Glandless cottonseed, lacking the toxic compound gossypol, is a new food source. However, the seed storage proteins in cottonseed may act as allergens. To assess this risk, glandless cottonseed protein extracts were evaluated for IgE binding by peanut and tree nut allergic volunteers. ELISA demonstrated that 25% of 32 samples had significant binding to cottonseed extracts. Immunoblot analysis with pooled sera indicated that IgE recognized a pair of bands migrating at approximately 50 kDa. Excision of these bands and subsequent mass-spectrometric analysis demonstrated peptide matches to cotton C72 and GC72 vicilin and legumin A and B proteins. Further, in silico analysis indicated similarity of the cotton vicilin and legumin proteins to peanut vicilin (Ara h 1) and cashew nut legumin (Ana o 2) IgE-binding epitopes among others. The observations suggest both the cotton vicilin and legumin proteins were recognized by the nut allergic IgE, and they should be considered for future allergen risk assessments evaluating glandless cottonseed protein products.


Assuntos
Fabaceae , Hipersensibilidade Alimentar , Humanos , Nozes , Arachis/metabolismo , Óleo de Sementes de Algodão , Imunoglobulina E , Alérgenos/química , Fabaceae/metabolismo , Proteínas de Armazenamento de Sementes , Proteínas de Plantas/metabolismo , Antígenos de Plantas
5.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770717

RESUMO

In this study, a simple and effective way to produce washable antimicrobial wipes was developed based on the unique ability of raw cotton fiber to produce silver nanoparticles. A nanocomposite substructure of silver nanoparticles (25 ± 3 nm) was generated in raw cotton fiber without reducing and stabilizing agents. This nanocomposite raw cotton fiber (2100 ± 58 mg/kg in the concentration of silver) was blended in the fabrication of nonwoven wipes. Blending small amounts in the wipes-0.5% for antimicrobial properties and 1% for wipe efficacy-reduced the viability of S. aureus and P. aeruginosa by 99.9%. The wipes, fabricated from a blend of 2% nanocomposite raw cotton fiber, maintained their antibacterial activities after 30 simulated laundering cycles. The washed wipes exhibited bacterial reductions greater than 98% for both Gram-positive and Gram-negative bacteria.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanocompostos , Fibra de Algodão , Antibacterianos/farmacologia , Antibacterianos/química , Prata/química , Staphylococcus aureus , Nanopartículas Metálicas/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Nanocompostos/química
6.
Environ Res ; 212(Pt D): 113465, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35594959

RESUMO

Mass production of microalgal biodiesel is hindered by microalgae harvesting efficiency and costs. In this study, Daphnia domesticated by amino acids were used to harvest microalgae via ingesting. The main factors (density of Daphnia, salinity, pH, light-environment, temperature and algal concentration) that were conducive to Daphnia feeding were optimized. Under the optimal condition, Microalgae-feeding Daphnia were domesticated by adding D-glutamic acid and L-cysteine as stimulating factors. After that, the ingestion rate of domesticated Daphnia increased by 24.93%. The presence of Daphnia as a predator can induce microalgae to mass into clusters. Combining Daphnia feeding and the inductive defense flocculation of microalgae, the harvesting rate of mixed algae (Chlorella pyrenoidosa and Scenedesmus obliquus) reached over 95% after 9 h. Overall, this work suggested that Daphnia feeding process is a green and economical approach for microalgae harvesting.


Assuntos
Chlorella , Microalgas , Aminoácidos/metabolismo , Animais , Biocombustíveis , Biomassa , Daphnia , Floculação , Microalgas/metabolismo
7.
Molecules ; 27(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011547

RESUMO

Common "glanded" (Gd) cottonseeds contain the toxic compound gossypol that restricts human consumption of the derived products. The "glandless" (Gl) cottonseeds of a new cotton variety, in contrast, show a trace gossypol content, indicating the great potential of cottonseed for agro-food applications. This work comparatively evaluated the chemical composition and thermogravimetric behaviors of the two types of cottonseed kernels. In contrast to the high gossypol content (3.75 g kg-1) observed in Gd kernels, the gossypol level detected in Gl kernels was only 0.06 g kg-1, meeting the FDA's criteria as human food. While the gossypol gland dots in Gd kernels were visually observed, scanning electron microcopy was not able to distinguish the microstructural difference between ground Gd and Gl samples. Chemical analysis and Fourier transform infrared (FTIR) spectroscopy showed that Gl kernels and Gd kernels had similar chemical components and mineral contents, but the former was slightly higher in protein, starch, and phosphorus contents. Thermogravimetric (TG) processes of both kernels and their residues after hexane and ethanol extraction were based on three stages of drying, de-volatilization, and char formation. TG-FTIR analysis revealed apparent spectral differences between Gd and Gl samples, as well as between raw and extracted cottonseed kernel samples, indicating that some components in Gd kernels were more susceptible to thermal decomposition than Gl kernels. The TG and TG-FTIR observations suggested that the Gl kernels could be heat treated (e.g., frying and roasting) at an optimal temperature of 140-150 °C for food applications. On the other hand, optimal pyrolysis temperatures would be much higher (350-500 °C) for Gd cottonseed and its defatted residues for non-food bio-oil and biochar production. The findings from this research enhance the potential utilization of Gd and Gl cottonseed kernels for food applications.


Assuntos
Gossypium/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Sementes/química , Gossipol/análise , Gossipol/química , Humanos , Extratos Vegetais/análise , Extratos Vegetais/química , Sementes/ultraestrutura , Análise Espectral , Termogravimetria
8.
Water Sci Technol ; 81(11): 2441-2449, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32784287

RESUMO

Municipal sludge disposal and recycle has become a prominent research theme. In this study, a sequential process for integral treatment of municipal sludge was primarily presented, combining acid leaching, anion exchange and aerobic composting. The aim of the process was to remove chromium (Cr) from the sludge and reuse the sludge as manure. Firstly, Cr was removed from municipal sludge via the acid leaching process; the removal rate was up to 57.43%. Then, ion exchange resin was used to remove Cr from leachate; the removal rate reached 95%. Aluminum sheet was used to replace the Cr from eluent; the replacement rate was 63.3%. The aerobic composting process could be successfully warmed up to above 55 °C and lasted for 4 days; the seed germination index reached 68.3%. After the composting process, the residual Cr in sludge mainly existed at a more stable residual state and organic binding state. Overall, this novel sequential process serves as a potential high-efficiency, green, low-energy way for municipal sludge recycle.


Assuntos
Compostagem , Ânions , Esterco , Reciclagem , Esgotos
9.
J Environ Sci (China) ; 77: 156-166, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30573079

RESUMO

Tai Lake (Ch: Taihu) has attracted international attention forcyanobacteria blooms. However, the drivers of cultural eutrophication, especially long-term socio-economic indicators have been little researched. The results of research demonstrate how socio-economic development affected quality of water and how it has been improved by anthropogenic activities. This study described variability in indicators of water quality in Tai Lakeand investigated thedrivers. Significant relationships existed between concentrations of annual mean total nitrogen (TN), total phosphorous (TP), chemical oxygen demand (COD) and biological oxygen demand (BOD), and population, per capital gross domestic production (GDP) and sewage discharge (p < 0.05). However, mechanisms causing change varied among TN, TP, COD and BOD. Before 2000, the main contributors to increases in concentrations of TN were human population, GDP and volumes of domestic sewage discharges. After 2000, discharges of industrial sewage become the primary contributor. After 1998, the regressions of annual mean TN, TP and COD on per capital GDP, population and domestic sewage discharge were reversed compared to the former period. Since 1999, an apparent inverted U-shaped relationship between environmental pollution and economic development has developed, which indicated that actions taken by governments have markedly improved quality of water in Tai Lake. The statistical relationship between BOD and per capital GDP didn't conform to the Kuznet curve. The U-shaped Kuznet curve may offer hope for the future that with significant environmental investments a high GDP can be reached and maintained without degradation of the environment, especially through appropriate management of industrial sewage discharge.


Assuntos
Monitoramento Ambiental , Produto Interno Bruto/tendências , Lagos/química , Água/química , Análise da Demanda Biológica de Oxigênio , Nitrogênio/análise , Fósforo/análise
10.
J Environ Qual ; 43(2): 690-700, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25602670

RESUMO

Manure from beef cattle feedyards is a valuable source of nutrients and assists with maintaining soil quality. However, humification and decomposition processes occurring during feedyard manure's on-farm life cycle influence the forms, concentrations, and availability of carbon (C) and nutrients such as nitrogen (N) and phosphorus (P). Improved understanding of manure organic matter (OM) chemistry will provide better estimates of potential fertilizer value of manure from different feedyard sources (e.g., manure accumulated in pens, stockpiled manure after pen scraping) and in settling basin and retention pond sediments. This will also assist with identifying factors related to nutrient loss and environmental degradation via volatilization of ammonia and nitrous oxide and nitrate leaching. We used Fourier-transform infrared (FTIR) and ultraviolet-visible (UV-vis) spectroscopies to characterize structural and functional properties of OM and water-extractable OM (WEOM) from different sources (surface manure, manure pack, settling basin, retention pond) on a typical commercial beef feedyard in the Texas Panhandle. Results showed that as beef manure completes its on-farm life cycle, concentrations of dissolved organic C and N decrease up to 98 and 95%, respectively. The UV-vis analysis of WEOM indicated large differences in molecular weight, lignin content, and proportion of humified OM between manures from different sources. The FTIR spectra of OM and WEOM indicate preferential decomposition of fats, lipids, and proteins over aromatic polysaccharides such as lignin. Further work is warranted to evaluate how application of feedyard manure from different sources influences soil metabolic functioning and fertility.

11.
Polymers (Basel) ; 16(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38891500

RESUMO

With the increasing awareness of plastic pollution in the environment and the accumulation of microplastics in water, a significant amount of research and development is ongoing to replace the synthetic plastics in packaging and coatings. In this work, we explored the blends of carboxymethyl cellulose (CMC) and washed cottonseed meal (CSM, consisting mostly of cottonseed protein) as agro-based, biodegradable, and sustainable alternatives to plastics. Glycerol was found to be a suitable plasticizer for these blends. The blends of CMC/CSM were produced as single-layer films from 50 to 90 µm in thickness, consisting of different proportions of the components and plasticizer. The evaluated properties included opacity, water vapor permeability, mechanical properties, thermogravimetric analysis, moisture sorption analysis, and water swelling test. Higher percentages of CSM in the blend resulted in higher opacity and lower water vapor permeation rates. The mechanical strength waned with lower levels of CMC. Possible applications for these blends include their use as water-soluble food packaging and coatings and as dissolvable bags and pouches for detergents and agrochemicals.

12.
Sci Total Environ ; 927: 172167, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580118

RESUMO

The improvement of food security and nutrition has attracted wide attention, and microalgae as the most promising food source are being further explored. This paper comprehensively introduces basic and functional nutrients rich in microalgae by elaborated tables incorporating a wide variety of studies and summarizes factors influencing their accumulation effects. Subsequently, multiple comparisons of nutrients were conducted, indicating that microalgae have a high protein content. Moreover, controllable production costs and environmental friendliness prompt microalgae into the list that contains more promising and reliable future food. However, microalgae and -based foods approved and sold are limited strictly, showing that safety is a key factor affecting dietary consideration. Notably, sensory profiles and ingredient clarity play an important role in improving the acceptance of microalgae-based foods. Finally, based on the bottleneck in the microalgae food industry, suggestions for its future development were discussed.


Assuntos
Microalgas , Inocuidade dos Alimentos , Nutrientes/análise , Valor Nutritivo
13.
ACS Omega ; 9(11): 13017-13027, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524471

RESUMO

Engineering fibers with nanomaterials is an effective way to modify their properties and responses to external stimuli. In this study, we doped cotton fibers with silver nanoparticles, both on the surface (126 ± 17 nm) and throughout the fiber cross section (18 ± 4 nm), and examined the resistance to soil biodegradation. A reagent-free one-pot treatment of a raw cotton fabric, where noncellulosic constituents of the raw cotton fiber and starch sizing served as reducing agents, produced silver nanoparticles with a total concentration of 11 g/kg. In a soil burial study spanning 16 weeks, untreated cotton underwent a sequential degradation process-fibrillation, fractionation, and merging-corresponding to the length of the soil burial period, whereas treated cotton did not exhibit significant degradation. The remarkable biodegradation resistance of the treated cotton was attributed to the antimicrobial properties of silver nanoparticles, as demonstrated through a test involving the soil-borne fungus Aspergillus flavus. The nonlinear loss behavior of silver from the treated cotton suggests that nanoparticle depletion in the soil depends on their location, with interior nanoparticles proving durable against environmental exposure.

14.
Environ Sci Technol ; 47(14): 7679-87, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23731033

RESUMO

The role of sediment-bound organic phosphorus (Po) on lake eutrophication was studied using sequential extraction and enzymatic hydrolysis by collecting sediments from Dianchi Lake, China. Bioavailable Po species including labile monoester P, diester P, and phytate-like P were identified in the sequential extractions by H2O, NaHCO3, and NaOH. For the H2O-Po, 36.7% (average) was labile monoester P, 14.8% was diester P, and 69.9% was phytate-like P. In NaHCO3-Po, 19.9% was labile monoester P, 17.5% was diester P, and 58.8% was phytate-like P. For NaOH-Po, 25.6% was labile monoester P, 7.9% was diester P, and 35.9% was phytate-like P. Labile monoester P was active to support growth of algae to form blooms. Diester P mainly distributed in labile H2O and NaHCO3 fractions was readily available to cyanobacteria. Phytate-like P represents a major portion of the Po in the NaOH fractions, also in the more labile H2O and NaHCO3 fractions. Based on results of sequential extraction of Po and enzymatic hydrolysis, lability and bioavailability was in decreasing order as follows: H2O-Po > NaHCO3-Po > NaOH-Po, and bioavailable Po accounted for only 12.1-27.2% of total Po in sediments. These results suggest that the biogeochemical cycle of bioavailable Po might play an important role in maintaining the eutrophic status of lakes.


Assuntos
Sedimentos Geológicos/química , Compostos Orgânicos/química , Fósforo/química , Disponibilidade Biológica , Hidrólise
15.
Foods ; 12(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36673470

RESUMO

Glandless (Gl) cottonseed is a unique cotton variety with only a trace content of toxic gossypol present. This new cottonseed raises the potential of its enhanced utilization as an agro-food for human consumption. In this work, Gl cottonseed kernels were used with additional cottonseed oil to produce novel peanut butter-like products. Kernels roasted at two temperatures (140 or 150 °C) for a given time (15 or 30 min) were first ground with different ratios of cottonseed oil and two other ingredients (i.e., salt and sugar) with a food blender, and then passed through a meat grinder with a 4-mm-hole grinding plate. Per the preliminary result, the butter-like products with Gl kernels roasted at 150 °C were subject to further structural and textural evaluation. The color of the two butter-like products was comparable to a commercial peanut butter, but the formers' textural properties were significantly different (p ≤ 0.05) from the latter. Morphologic examination by Scanning Electron Microscopy (SEM) and cryo-SEM revealed that the butter product with a longer (30 min) roasting time possessed a smoother surface than the products with a shorter (15 min) roasting time. Oil stability test showed no substantial oil separation (<3%) from the butter products over 7 weeks at ambient temperature (22 °C). This work provides the basic information and parameters for lab cottonseed butter making so that optimization and characterization of cottonseed butter formation can be designed and performed in future research.

16.
Food Chem ; 403: 134404, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182850

RESUMO

Roasting is a technological process in some food applications of agricultural products. To investigate the composition changes of the extractable functional/bioactive components of cottonseed, in this work, glandless cottonseed kernels were roasted at 110, 120, 140 and 150 °C for 15 min, respectively. The UV/vis data of the 80 % ethanol extracts found that roasting increased the level of phenolic compounds. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of the extracts identified about 44 % to 55 % of total formulas as potential phenolic compounds. Roasting (up to 140 °C) mainly increased carbohydrate-, lignin-, and tannin-like compounds while lipid-like compounds decreased. The compositional changes at 150 °C were less than those at 140 °C, attributed to devolatilization at the higher temperature. The information of chemical profiling of cottonseed and the roasting impact would be greatly useful in enhanced utilization of cottonseed as nutrient and functional foods or food supplements.


Assuntos
Óleo de Sementes de Algodão , Ciclotrons , Óleo de Sementes de Algodão/química , Análise de Fourier , Espectrometria de Massas/métodos , Lignina , Espectrometria de Massas por Ionização por Electrospray/métodos
17.
Foods ; 12(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38002215

RESUMO

Plant-based butters from nuts and seeds have steadily increased in consumer popularity due to their unique flavors and healthy nutritional properties. Oil content is a critical parameter to measure the proper consistency and stability of plant butter and spread products. Previous work has shown that glandless cottonseed can be used to formulate cottonseed butter products to increase the values of cottonseed. As part of the efforts made in the valorization of cottonseed, this work evaluated the effects of oil content on the microstructural and textural properties of cottonseed butter/spread products. While the oil content in the raw cottonseed kernels was 35% of the kernel biomass, additional cottonseed oil was added to make cottonseed butter products with six oil content levels (i.e., 36, 43, 47, 50, 53, and 57%). The values of three textural parameters, firmness, spreadability, and adhesiveness, decreased rapidly in an exponential mode with the increasing oil content. The particle size population in these butter samples was characterized by similar trimodal distribution, with the majority in the middle mode region with particle sizes around 4.5-10 µm. Higher oil content decreased the butter particle size slightly but increased oil separation during storage. The oxidation stability with a rapid oxygen measurement was gradually reduced from 250 min with 36% oil to 65 min with 57% oil. The results of this work provide information for the further optimization of formulation parameters of cottonseed butter products.

18.
ACS Omega ; 8(34): 31281-31292, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37663495

RESUMO

Cotton gin waste presents a significant challenge in the cotton ginning industry due to its abundant generation and limited disposal options. In this study, we explored the potential of cotton gin waste as a naturally occurring source material that can synthesize and host silver nanoparticles. The noncellulosic constituents of cotton gin waste served as effective reducing agents, facilitating the conversion of silver ions into silver atoms, while its porous structure acted as a microreactor, enabling controlled particle growth. A simple heat treatment of cotton gin waste powder in an aqueous silver precursor solution actualized the in situ synthesis of silver nanoparticles, without the need for additional chemical agents. Remarkably, a high concentration of silver nanoparticles (14.7%) with an average diameter of approximately 27 nm was produced throughout the entire volume of cotton gin waste. Electron microscopic images of cross-sectioned cotton gin waste confirm the internal formation of nanoparticles. Rietveld refinement analysis of X-ray diffraction patterns showed that the majority of the nanoparticles possess a cubic silver crystal structure. By leveraging the well-known biocidal properties of silver nanoparticles, the resulting silver nanoparticle-filled cotton gin waste holds promise for novel antimicrobial and antifungal material applications.

19.
Polymers (Basel) ; 15(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36987206

RESUMO

Poly(lactic acid) (PLA) is a common biobased film-former made from renewable biomass, such as polysaccharides from sugarcane, corn, or cassava. It has good physical properties but is relatively expensive when compared to the plastics used for food packaging. In this work, bilayer films were designed, incorporating a PLA layer and a layer of washed cottonseed meal (CSM), an inexpensive agro-based raw material from cotton manufacturing, where the main component is cottonseed protein. These bilayer films were made through the solvent casting method. The combined thickness of the PLA/CSM bilayer film was between 47 and 83 µm. The thickness of the PLA layer in this film was 10%, 30%, or 50% of the total bilayer film's thickness. Mechanical properties of the films, opacity, water vapor permeation, and thermal properties were evaluated. Since PLA and CSM are both agro-based, sustainable, and biodegradable, the bilayer film may be used as an eco-friendlier food packaging material, which helps reduce the environmental problems of plastic waste and microplastics. Moreover, the utilization of cottonseed meal may add value to this cotton byproduct and provide a potential economic benefit to cotton farmers.

20.
Heliyon ; 9(4): e14797, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37025844

RESUMO

Dissolved organic matter (DOM) plays a major role in ecological systems, affecting the fate and transportation of iron (Fe) and phosphorus (P). To better understand the geochemical cycling of these components, soil and sediment samples were collected around a reservoir downstream of a typical temperate forest in Northeast China. The DOM fractions from these soils, river, and reservoir sediments were extracted and then characterized by spectroscopic techniques. Comparative characterization data showed that the DOM pool of the Xishan Reservoir was partly autochthonous and derived from runoff and deposition of material in terrestrial ecosystems upstream. The upper reaches of the reservoir had significantly lower total Fe (TFe) content in the DOM extracts than those found in the reservoir (p < 0.05). Within the DOM, TFe was correlated with the amino acid tryptophan (p < 0.01). There was also a strong positive correlation between total P (TP) concentrations in DOM and tyrosine (p < 0.01). Organic P (Po) comprised most of the DOM TP, and was related to dissolved organic carbon (DOC) content and the amino acid tyrosine (p < 0.01). The interaction among DOM, Fe, and P appears to be due to complexation with tryptophan (Fe) and tyrosine (P). This suggests that the formation of Fe-DOM-P would be produced more readily than DOM-Fe-P complexes under optimal conditions. The interaction among DOM, Fe, and P can promote the coordinated migration, transformation, and ultimate fate of components that are complex with DOM from riverine and reservoir ecosystems, ultimately leading to accumulation within a reservoir and transport to downstream regions when reservoir dams are released. Reservoir dams can effectively intercept DOM and minerals prevent its flow downstream; however, it is important to understand the co-cycling of DOM, Fe and P within reservoirs, downstream rivers, and ultimately oceans. The involvement of amino acid components of DOM, tyrosine and tryptophan, in DOM complexation is an issue that requires further study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA