Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Br J Cancer ; 131(8): 1263-1278, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39217195

RESUMO

BACKGROUND: This study focuses on the role of lysosomal trafficking in prostate cancer, given the essential role of lysosomes in cellular homoeostasis. METHODS: Lysosomal motility was evaluated using confocal laser scanning microscopy of LAMP-1-transfected prostate cells and spot-tracking analysis. Expression of lysosomal trafficking machinery was evaluated in patient cohort databases and through immunohistochemistry on tumour samples. The roles of vesicular trafficking machinery were evaluated through over-expression and siRNA. The effects of R1881 treatment on lysosome vesicular trafficking was evaluated by RNA sequencing, protein quantification and fixed- and live-cell microscopy. RESULTS: Altered regulation of lysosomal trafficking genes/proteins was observed in prostate cancer tissue, with significant correlations for co-expression of vesicular trafficking machinery in Gleason patterns. The expression of trafficking machinery was associated with poorer patient outcomes. R1881 treatment induced changes in lysosomal distribution, number, and expression of lysosomal vesicular trafficking machinery in hormone-sensitive prostate cancer cells. Manipulation of genes involved in lysosomal trafficking events induced changes in lysosome positioning and cell phenotype, as well as differential effects on cell migration, in non-malignant and prostate cancer cells. CONCLUSIONS: These findings provide novel insights into the altered regulation and functional impact of lysosomal vesicular trafficking in prostate cancer pathogenesis.


Assuntos
Progressão da Doença , Lisossomos , Neoplasias da Próstata , Humanos , Masculino , Lisossomos/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Transporte Proteico
2.
Int J Mol Sci ; 20(23)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795513

RESUMO

Syntenin-1 is an essential multi-functional adaptor protein, which has multiple roles in membrane trafficking and exosome biogenesis, as well as scaffolding interactions with either the actin cytoskeleton or focal adhesions. However, how this functional multiplicity relates to syntenin-1 distribution in different endosome compartments or other intracellular locations and its underlying involvement in cancer pathogenesis have yet to be fully defined. To help facilitate the investigation of syntenin-1 biology, we developed two specific monoclonal antibodies (Synt-2C6 and Synt-3A11) to spatially distinct linear sequence epitopes on syntenin-1, which were each designed to be unique at the six-amino acid level. These antibodies produced very different intracellular staining patterns, with Synt-2C6 detecting endosomes and Synt-3A11 producing a fibrillar staining pattern suggesting a cytoskeletal localisation. Treatment of cells with Nocodazole altered the intracellular localisation of Synt-3A11, which was consistent with the syntenin-1 protein interacting with microtubules. In prostate tissue biopsies, Synt-3A11 defined atrophy and early-stage prostate cancer, whereas Synt-2C6 only showed minimal interaction with atrophic tissue. This highlights a critical need for site-specific antibodies and a knowledge of their reactivity to define differential protein distributions, interactions and functions, which may differ between normal and malignant cells.


Assuntos
Anticorpos Monoclonais/análise , Neoplasias da Próstata/patologia , Sinteninas/análise , Animais , Linhagem Celular , Linhagem Celular Tumoral , Mapeamento de Epitopos/métodos , Epitopos , Humanos , Imunoquímica/métodos , Masculino , Modelos Moleculares , Neoplasias da Próstata/diagnóstico
3.
Clin Endocrinol (Oxf) ; 85(4): 609-15, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27146357

RESUMO

OBJECTIVES: IGSF1 deficiency syndrome (IDS) is a recently described X-linked congenital central hypothyroidism disorder characterized by loss-of-function mutations in the immunoglobulin superfamily member 1 (IGSF1) gene. The phenotypic spectrum and intrafamilial variability associated with IDS remain unclear due to a paucity of large, well-characterized pedigrees. Here, we present phenotypic analysis and molecular characterization of a five-generation pedigree with IGSF1 deficiency containing 10 affected males. PATIENTS AND METHODS: Pituitary function was assessed in all available family members (n = 8 affected males and n = 5 carrier females). Molecular characterization of the family was performed by Sanger sequencing of PCR products amplified from the IGSF1 locus and by array comparative genomic hybridization. RESULTS: A 42-kb IGSF1 deletion spanning the entire coding sequence was identified in all affected males. TSH deficiency, although subclinical in one case, was identified in all affected males (n = 8). PRL and GH deficiency were also present in 5 of 6 and 4 of 8 affected males, respectively. In contrast to previous reports, macroorchidism was not detected in any of the four affected males who were examined for this feature. Only 1 of 5 carrier females had pituitary dysfunction (TSH and GH deficiency). CONCLUSION: Individuals with identical IGSF1 deletions can exhibit variable pituitary hormone deficiencies, of which overt TSH deficiency is the most consistent feature. We also show that macroorchidism is not obligatory in males with IDS. Mutations of IGSF1 should therefore be considered in males with isolated hypopituitarism that includes TSH deficiency.


Assuntos
Hipotireoidismo Congênito/genética , Doenças Genéticas Ligadas ao Cromossomo X , Imunoglobulinas/genética , Proteínas de Membrana/genética , Deleção de Sequência , Hibridização Genômica Comparativa , Feminino , Humanos , Hipopituitarismo/genética , Masculino , Mutação , Linhagem
4.
Sci Rep ; 13(1): 13489, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596305

RESUMO

Prostate cancer (PCa) development and progression relies on the programming of glucose and lipid metabolism, and this involves alterations in androgen receptor expression and signalling. Defining the molecular mechanism that underpins this metabolic programming will have direct significance for patients with PCa who have a poor prognosis. Here we show that there is a dynamic balance between sortilin and syndecan-1, that reports on different metabolic phenotypes. Using tissue microarrays, we demonstrated by immunohistochemistry that sortilin was highly expressed in low-grade cancer, while syndecan-1 was upregulated in high-grade disease. Mechanistic studies in prostate cell lines revealed that in androgen-sensitive LNCaP cells, sortilin enhanced glucose metabolism by regulating GLUT1 and GLUT4, while binding progranulin and lipoprotein lipase (LPL) to limit lipid metabolism. In contrast, in androgen-insensitive PC3 cells, syndecan-1 was upregulated, interacted with LPL and colocalised with ß3 integrin to promote lipid metabolism. In addition, androgen-deprived LNCaP cells had decreased expression of sortilin and reduced glucose-metabolism, but increased syndecan-1 expression, facilitating interactions with LPL and possibly ß3 integrin. We report a hitherto unappreciated molecular mechanism for PCa, which may have significance for disease progression and how androgen-deprivation therapy might promote castration-resistant PCa.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Próstata , Sindecana-1/genética , Antagonistas de Androgênios , Androgênios , Integrina beta3 , Processos Neoplásicos
5.
Biomolecules ; 12(7)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35883516

RESUMO

The regulation of vitamin D3 actions in humans occurs mainly through the Cytochrome P450 24-hydroxylase (CYP24A1) enzyme activity. CYP24A1 hydroxylates both 25-hydroxycholecalciferol (25(OH)D3) and 1,25-dihydroxycholecalciferol (1,25(OH)2D3), which is the first step of vitamin D catabolism. An abnormal status of the upregulation of CYP24A1 occurs in many diseases, including chronic kidney disease (CKD). CYP24A1 upregulation in CKD and diminished activation of vitamin D3 contribute to secondary hyperparathyroidism (SHPT), progressive bone deterioration, and soft tissue and cardiovascular calcification. Previous studies have indicated that CYP24A1 inhibition may be an effective strategy to increase endogenous vitamin D activity and decrease SHPT. This study has designed and synthesized a novel C-24 O-methyloxime analogue of vitamin D3 (VD1-6) to have specific CYP24A1 inhibitory properties. VD1-6 did not bind to the vitamin D receptor (VDR) in concentrations up to 10-7 M, assessed by a VDR binding assay. The absence of VDR binding by VD1-6 was confirmed in human embryonic kidney HEK293T cultures through the lack of CYP24A1 induction. However, in silico docking experiments demonstrated that VD1-6 was predicted to have superior binding to CYP24A1, when compared to that of 1,25(OH)2D3. The inhibition of CYP24A1 by VD1-6 was also evident by the synergistic potentiation of 1,25(OH)2D3-mediated transcription and reduced 1,25(OH)2D3 catabolism over 24 h. A further indication of CYP24A1 inhibition by VD1-6 was the reduced accumulation of the 24,25(OH)D3, the first metabolite of 25(OH)D catabolism by CYP24A1. Our findings suggest the potent CYP24A1 inhibitory properties of VD1-6 and its potential for testing as an alternative therapeutic candidate for treating SHPT.


Assuntos
Colecalciferol , Insuficiência Renal Crônica , Colecalciferol/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Células HEK293 , Humanos , Oximas , Receptores de Calcitriol/metabolismo , Vitamina D , Vitamina D3 24-Hidroxilase/metabolismo
6.
Transl Oncol ; 14(12): 101229, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34592589

RESUMO

Tumour metastasis accounts for over 90% of cancer related deaths. The platelet is a key blood component, which facilitates efficient metastasis. This study aimed to understand the molecular mechanisms involved in tumour-platelet cell interactions. The interaction between cancer cells and platelets was examined in 15 epithelial cell lines, representing 7 cancer types. Gene expression analysis of EMT-associated and cancer stemness genes was performed by RT-PCR. Whole transcriptome analysis (WTA) was performed using Affymetrix 2.0ST arrays on a platelet co-cultured ovarian model. Platelet adhesion and activation occurred across all tumour types. WTA identified increases in cellular movement, migration, invasion, adhesion, development, differentiation and inflammation genes and decreases in processes associated with cell death and survival following platelet interaction. Increased invasive capacity was also observed in a subset of cell lines. A cross-comparison with a platelet co-cultured mouse model identified 5 common altered genes; PAI-1, PLEK2, CD73, TNC, and SDPR. Platelet cancer cell interactions are a key factor in driving the pro-metastatic phenotype and appear to be mediated by 5 key genes which have established roles in metastasis. Targeting these metastasis mediators could improve cancer patient outcomes.

7.
Biopreserv Biobank ; 18(5): 462-470, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32856938

RESUMO

Background: Liquid biopsies offer a minimally invasive approach to patient disease diagnosis and monitoring. However, these are highly affected by preprocessing variables with many protocols designed for downstream analysis of a single molecular biomarker. Here we investigate whether specialized blood tubes could be repurposed for the analysis of an increasingly valuable biomarker, extracellular vesicles (EVs). Methods: Blood was collected from three donors into K3-EDTA, Roche, or Streck cell-free DNA (cfDNA) collection tubes and processed using sequential centrifugation either immediately or after storage for 3 days. MicroEV were collected from platelet-poor plasma by 10,000 g centrifugation and NanoEVs isolated using size exclusion chromatography. Particle size and counts were assessed by Nanoparticle Tracking Analysis, protein quantitation by bicinchoninic acid assay (BCA) assay, and dot blotting for blood cell surface proteins. Results: MicroEVs and NanoEVs could be isolated from plasma collected using all three tube types. Major variations were seen with delayed time to processing. Both MicroEV particle number and protein content increased with the processing delay. The NanoEV number did not change with the time-delay but their protein quantity increased. EV-associated proteins predominantly arose from platelets (CD61) and erythrocytes (CD235a). However, leukocyte marker CD45 was only increased in NanoEVs from ethylenediaminetetraacetic acid (EDTA) tubes, suggestive of stabilization of nucleated cells by the specialized blood tubes. Epithelial cell surface marker EpCAM, often used as a marker of cancer, remained the same across conditions in both MicroEV and NanoEV preparations indicating that these EVs were stable with time. Conclusions: Specialized cfDNA collection tubes can be repurposed for MicroEV and NanoEV analysis; however, simple counting or using protein quantity as a surrogate of EV number may be confounded by preanalytical processing. The EVs would be suitable for disease selective EV subtype analysis if the molecular target of interest is not present in blood cells.


Assuntos
Vesículas Extracelulares , Ácidos Nucleicos Livres , Ácido Edético , Humanos , Biópsia Líquida , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA