Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 116, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37194065

RESUMO

Discoidin Domain Receptor (DDR)-1 is activated by collagen. Nilotinib is a tyrosine kinase inhibitor that is FDA-approved for leukemia and potently inhibits DDR-1. Individuals diagnosed with mild-moderate Alzheimer's disease (AD) treated with nilotinib (versus placebo) for 12 months showed reduction of amyloid plaque and cerebrospinal fluid (CSF) amyloid, and attenuation of hippocampal volume loss. However, the mechanisms are unclear. Here, we explored unbiased next generation whole genome miRNA sequencing from AD patients CSF and miRNAs were matched with their corresponding mRNAs using gene ontology. Changes in CSF miRNAs were confirmed via measurement of CSF DDR1 activity and plasma levels of AD biomarkers. Approximately 1050 miRNAs are detected in the CSF but only 17 miRNAs are specifically altered between baseline and 12-month treatment with nilotinib versus placebo. Treatment with nilotinib significantly reduces collagen and DDR1 gene expression (upregulated in AD brain), in association with inhibition of CSF DDR1. Pro-inflammatory cytokines, including interleukins and chemokines are reduced along with caspase-3 gene expression. Specific genes that indicate vascular fibrosis, e.g., collagen, Transforming Growth Factors (TGFs) and Tissue Inhibitors of Metalloproteases (TIMPs) are altered by DDR1 inhibition with nilotinib. Specific changes in vesicular transport, including the neurotransmitters dopamine and acetylcholine, and autophagy genes, including ATGs, indicate facilitation of autophagic flux and cellular trafficking. Inhibition of DDR1 with nilotinib may be a safe and effective adjunct treatment strategy involving an oral drug that enters the CNS and adequately engages its target. DDR1 inhibition with nilotinib exhibits multi-modal effects not only on amyloid and tau clearance but also on anti-inflammatory markers that may reduce cerebrovascular fibrosis.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Receptores com Domínio Discoidina , Pirimidinas/farmacologia , Colágeno/uso terapêutico , Fibrose , Inflamação/tratamento farmacológico
2.
Ann Neurol ; 88(1): 183-194, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32468646

RESUMO

OBJECTIVE: Preclinical evidence with nilotinib, a US Food and Drug Administration (FDA)-approved drug for leukemia, indicates improvement in Alzheimer's disease phenotypes. We investigated whether nilotinib is safe, and detectable in cerebrospinal fluid, and alters biomarkers and clinical decline in Alzheimer's disease. METHODS: This single-center, phase 2, randomized, double-blind, placebo-controlled study investigated the safety, tolerability, and pharmacokinetics of nilotinib, and measured biomarkers in participants with mild to moderate dementia due to Alzheimer's disease. The diagnosis was supported by cerebrospinal fluid or amyloid positron emission tomography biomarkers. Nilotinib 150 mg versus matching placebo was taken orally once daily for 26 weeks followed by nilotinib 300 mg versus placebo for another 26 weeks. RESULTS: Of the 37 individuals enrolled, 27 were women and the mean (SD) age was 70.7 (6.48) years. Nilotinib was well-tolerated, although more adverse events, particularly mood swings, were noted with the 300 mg dose. In the nilotinib group, central nervous system (CNS) amyloid burden was significantly reduced in the frontal lobe compared to the placebo group. Cerebrospinal fluid Aß40 was reduced at 6 months and Aß42 was reduced at 12 months in the nilotinib group compared to the placebo. Hippocampal volume loss was attenuated (-27%) at 12 months and phospho-tau-181 was reduced at 6 months and 12 months in the nilotinib group. INTERPRETATION: Nilotinib is safe and achieves pharmacologically relevant cerebrospinal fluid concentrations. Biomarkers of disease were altered in response to nilotinib treatment. These data support a larger, longer, multicenter study to determine the safety and efficacy of nilotinib in Alzheimer's disease. ANN NEUROL 2020 ANN NEUROL 2020;88:183-194.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Proteínas Tirosina Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Resultado do Tratamento , Proteínas tau/líquido cefalorraquidiano
3.
Mov Disord ; 36(3): 740-749, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33215762

RESUMO

BACKGROUND: Nilotinib is US Food and Drug Administration-approved for leukemia, and this open-label study investigated the safety, tolerability, and potential clinical effects of nilotinib in medically optimized patients with Parkinson's disease. OBJECTIVES: Safety and tolerability were the primary objectives, and clinical outcomes were exploratory. METHODS: A total of 63 patients completed a 15-month phase 2, double-blind, placebo-controlled study and were rerandomized 1:1 into an open-label study of nilotinib 150 mg versus 300 mg for 12 months. RESULTS: Nilotinib was safe and tolerated, and no adverse effects seemed to be related to the drug, and no differences in adverse events were observed between groups. Exploratory clinical outcomes showed that nilotinib 300 mg was remarkably stable from baseline to 27 months using partial and total Unified Parkinson's Disease Scale (UPDRS). Nilotinib 150 mg versus 300 mg, significantly declined using partial or the sum of UPDRS Parts I and II. There was no significant difference in nilotinib 150 mg versus 300 mg using UPDRS Part III (on levodopa) and total UPDRS Parts I to III. Subgroup analysis showed that late-start nilotinib 150 mg significantly worsened using the sum of UPDRS Parts II + III and total UPDRS Parts I to III compared with late-start nilotinib 300 mg. Quality of life using the Parkinson's Disease Questionnaire in nilotinib 150 mg significantly declined between 15 and 27 months compared with nilotinib 300 mg, and there was no change in cognition using the Montreal Cognitive Assessment between groups. CONCLUSIONS: This study provides evidence that nilotinib is safe and tolerated in Parkinson's disease. The exploratory clinical data will inform an adequately powered larger study to evaluate the efficacy of nilotinib 300 mg in Parkinson's disease. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Antiparkinsonianos/efeitos adversos , Método Duplo-Cego , Humanos , Levodopa , Doença de Parkinson/tratamento farmacológico , Pirimidinas , Qualidade de Vida
5.
J Neurochem ; 139(4): 610-623, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27507246

RESUMO

The trans-activating response of DNA/RNA-binding protein (TDP)-43 pathology is associated with many neurodegenerative diseases via unknown mechanisms. Here, we use a transgenic mouse model over-expressing human wild-type neuronal TDP-43 to study the effects of TDP-43 pathology on glutamate metabolism and synaptic function. We found that neuronal TDP-43 over-expression affects synaptic protein expression, including Synapsin I, and alters surrounding astrocytic function. TDP-43 over-expression is associated with an increase in glutamate and γ-amino butyric acid and reduction of glutamine and aspartate levels, indicating impairment of presynaptic terminal. TDP-43 also decreases tricarboxylic acid cycle metabolism and induces oxidative stress via lactate accumulation. Neuronal TDP-43 does not alter microglia activity or significantly changes systemic and brain inflammatory markers compared to control. We previously demonstrated that brain-penetrant tyrosine kinase inhibitors (TKIs), nilotinib and bosutinib, reduce TDP-43-induced cell death in transgenic mice. Here, we show that TKIs reverse the effects of TDP-43 on synaptic proteins, increase astrocytic function and restore glutamate and neurotransmitter balance in TDP-43 mice. Nilotinib, but not bosutinib, reverses mitochondrial impairment and oxidative metabolism. Taken together, these data suggest that TKIs can attenuate TDP-43 toxicity and improve synaptic and astrocytic function, independent of microglial or other inflammatory effects. In conclusion, our data demonstrate novel mechanisms of the effects of neuronal TDP-43 over-expression on synaptic protein expression and alteration of astrocytic function.


Assuntos
Astrócitos/fisiologia , Proteínas de Ligação a DNA/biossíntese , Homeostase/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/metabolismo , Sinapsinas/biossíntese , Animais , Astrócitos/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Expressão Gênica , Homeostase/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapsinas/genética
6.
Hum Mol Genet ; 23(18): 4960-9, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24847002

RESUMO

The transactivation DNA-binding protein (TDP)-43 binds to thousands of mRNAs, but the functional outcomes of this binding remain largely unknown. TDP-43 binds to Park2 mRNA, which expresses the E3 ubiquitin ligase parkin. We previously demonstrated that parkin ubiquitinates TDP-43 and facilitates its translocation from the nucleus to the cytoplasm. Here we used brain penetrant tyrosine kinase inhibitors (TKIs), including nilotinib and bosutinib and showed that they reduce the level of nuclear TDP-43, abrogate its effects on neuronal loss, and reverse cognitive and motor decline. Nilotinib decreased soluble and insoluble TDP-43, while bosutinib did not affect the insoluble level. Parkin knockout mice exhibited high levels of endogenous TDP-43, while nilotinib and bosutinib did not alter TDP-43, underscoring an indispensable role for parkin in TDP-43 sub-cellular localization. These data demonstrate a novel functional relationship between parkin and TDP-43 and provide evidence that TKIs are potential therapeutic candidates for TDP-43 pathologies.


Assuntos
Cognição/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Destreza Motora/efeitos dos fármacos , Neurônios/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Ubiquitina-Proteína Ligases/metabolismo , Compostos de Anilina/administração & dosagem , Compostos de Anilina/farmacologia , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Nitrilas/administração & dosagem , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Quinolinas/administração & dosagem , Quinolinas/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
7.
Hum Mol Genet ; 22(16): 3315-28, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23666528

RESUMO

Parkinson's disease is a movement disorder characterized by death of dopaminergic substantia nigra (SN) neurons and brain accumulation of α-synuclein. The tyrosine kinase Abl is activated in neurodegeneration. Here, we show that lentiviral expression of α-synuclein in the mouse SN leads to Abl activation (phosphorylation) and lentiviral Abl expression increases α-synuclein levels, in agreement with Abl activation in PD brains. Administration of the tyrosine kinase inhibitor nilotinib decreases Abl activity and ameliorates autophagic clearance of α-synuclein in transgenic and lentiviral gene transfer models. Subcellular fractionation shows accumulation of α-synuclein and hyper-phosphorylated Tau (p-Tau) in autophagic vacuoles in α-synuclein expressing brains, but nilotinib enhances protein deposition into the lysosomes. Nilotinib is used for adult leukemia treatment and it enters the brain within US Food and Drug Administration approved doses, leading to autophagic degradation of α-synuclein, protection of SN neurons and amelioration of motor performance. These data suggest that nilotinib may be a therapeutic strategy to degrade α-synuclein in PD and other α-synucleinopathies.


Assuntos
Autofagia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Pirimidinas/farmacologia , alfa-Sinucleína/metabolismo , Adulto , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/fisiologia , Genes abl , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/genética , Mutação Puntual , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/metabolismo , Pirimidinas/administração & dosagem , Pirimidinas/uso terapêutico , Substância Negra/metabolismo , alfa-Sinucleína/sangue
8.
J Biol Chem ; 288(6): 4103-15, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23258539

RESUMO

The importance of E3 ubiquitin ligases, involved in the degradation of misfolded proteins or promotion of protein-protein interaction, is increasingly recognized in neurodegeneration. TDP-43 is a predominantly nuclear protein, which regulates the transcription of thousands of genes and binds to mRNA of the E3 ubiquitin ligase Parkin to regulate its expression. Wild type and mutated TDP-43 are detected in ubiquitinated forms within the cytosol in several neurodegenerative diseases. We elucidated the mechanisms of TDP-43 interaction with Parkin using transgenic A315T mutant TDP-43 (TDP43-Tg) mice, lentiviral wild type TDP-43, and Parkin gene transfer rat models. TDP-43 expression increased Parkin mRNA and protein levels. Lentiviral TDP-43 increased the levels of nuclear and cytosolic protein, whereas Parkin co-expression mediated Lys-48 and Lys-63-linked ubiquitin to TDP-43 and led to cytosolic co-localization of Parkin with ubiquitinated TDP-43. Parkin and TDP-43 formed a multiprotein complex with HDAC6, perhaps to mediate TDP-43 translocation. In conclusion, Parkin ubiquitinates TDP-43 and facilitates its cytosolic accumulation through a multiprotein complex with HDAC6.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona Desacetilases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Desacetilase 6 de Histona , Histona Desacetilases/genética , Humanos , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Transporte Proteico/genética , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases/genética
9.
Alzheimers Dement (N Y) ; 8(1): e12296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662832

RESUMO

Introduction: Bosutinib, a dual Abelson/Src inhibitor, was investigated in individuals with dementia with Lewy bodies (DLB). Methods: A single site, randomized, double-blind, placebo-controlled study of the effects of oral bosutinib, 100 mg once daily for 12 weeks on primary safety and pharmacokinetics and secondary biomarker outcomes. Results: Twenty-six participants were randomized and included male and female (12:1) in the bosutinib arm and all male (13) in the placebo arm. The average age was 72.9 ± 8.1 (year ± standard deviation). There were no serious adverse events and no dropouts. Bosutinib was measured in the cerebrospinal fluid (CSF) and inhibited Abelson. Bosutinib reduced CSF alpha-synuclein and dopamine catabolism. Discussion: Bosutinib is safe and well tolerated and penetrates the blood-brain barrier to inhibit Abelson and reduce CSF alpha-synuclein and dopamine catabolism, suggesting that bosutinib (100 mg) may be at or near the lowest effective dose in DLB. These results will guide adequately powered studies to determine the efficacy of a dose range of bosutinib and longer treatment in DLB. Highlights: Bosutinib is a dual Abl/Src inhibitor that penetrates the blood brain barrierBosutinib is safe and tolerated in individuals with dementia with Lewy bodiesBosutinib engages its target via inhibition of Abl and SrcBosutinib reduces CSF alpha-synuclein and attenuates breakdown of dopamineBosutinib improves activities of daily living in dementia with Lewy bodies.

10.
Metabolites ; 12(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36557263

RESUMO

Nilotinib is a tyrosine kinase inhibitor that is safe and tolerated in neurodegeneration, it achieves CSF concentration that is adequate to inhibit discoidin domain receptor (DDR)-1. Nilotinib significantly affects dopamine metabolites, including Homovanillic acid (HVA), resulting in an increase in brain dopamine. HD is a hereditary disease caused by mutations in the Huntingtin's (HTT) gene and characterized by neurodegeneration and motor and behavioral symptoms that are associated with activation of dopamine receptors. We explored the effects of a low dose of nilotinib (150 mg) on behavioral changes and motor symptoms in manifest HD patients and examined the effects of nilotinib on several brain mechanisms, including dopamine transmission and gene expression via cerebrospinal fluid (CSF) miRNA sequencing. Nilotinib, 150 mg, did not result in any behavioral changes, although it significantly attenuated HVA levels, suggesting reduction of dopamine catabolism. There was no significant change in HTT, phosphorylated neuro-filament and inflammatory markers in the CSF and plasma via immunoassays. Whole miRNA genome sequencing of the CSF revealed significant longitudinal changes in miRNAs that control specific genes associated with autophagy, inflammation, microglial activity and basal ganglia neurotransmitters, including dopamine and serotonin.

11.
JAMA Neurol ; 77(3): 309-317, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841599

RESUMO

Importance: This study evaluated nilotinib safety and its effects on biomarkers as a potential disease-modifying drug in Parkinson disease. Objectives: To assess nilotinib effects on safety and pharmacokinetics and measure the change in exploratory biomarkers in patients with moderately severe Parkinson disease. Design, Setting, and Participants: This was a single-center, phase 2, randomized, double-blind, placebo-controlled trial with 300 patients approached in clinic; of these, 200 declined to participate, 100 were screened, 25 were excluded, and 75 were randomized 1:1:1 into placebo; nilotinib, 150-mg; or nilotinib, 300-mg groups. Recruitment started on May 17, 2017, and ended April 28, 2018, and follow-up ended August 10, 2019. Parkinson disease was confirmed according to the UK Brain Bank diagnostic criteria and symptoms were stabilized with use of optimal levodopa and/or dopamine agonists and other medications used in Parkinson disease. Interventions: Nilotinib vs placebo, administered orally once daily for 12 months followed by a 3-month washout period. Main Outcomes and Measures: It was hypothesized that nilotinib is safe and can be detected in the cerebrospinal fluid, where it alters exploratory biomarkers via inhibition of Abelson tyrosine kinase and potentially improves clinical outcomes. Results: Of the 75 patients included in the study, 55 were men (73.3%); mean (SD) age was 68.4 (8.2) years. Doses of 150 or 300 mg of nilotinib were reasonably safe, although more serious adverse events were detected in the nilotinib (150 mg: 6 [24%]; 300 mg: 12 [48%]) vs placebo (4 [16%]) groups. The 150-mg nilotinib group showed an increase in cerebrospinal fluid levels of the dopamine metabolites homovanillic acid (159.80nM; 90% CI, 7.04-312.60nM; P = .04) and 3,4-dihydroxyphenylacetic acid (4.87nM; 90% CI, 1.51-8.23nM; P = .01), and the 300-mg nilotinib group showed an increase in 3,4-dihydroxyphenylacetic acid (7.52nM; 90% CI, 2.35-12.69nM; P = .01). The nilotinib 150-mg but not the nilotinib 300-mg group demonstrated a reduction of α-synuclein oligomers (-0.04 pg/mL; 90% CI, -0.08 to 0.01 pg/mL; P = .03). A significant reduction of hyperphosphorylated tau levels was seen in the nilotinib 150-mg (-10.04 pg/mL; 90% CI, -17.41 to -2.67 pg/mL; P = .01) and nilotinib 300-mg (-12.05 pg/mL; 90% CI, -19.21 to -4.90 pg/mL; P = .01) groups. Conclusions and Relevance: In this study, nilotinib appeared to be reasonably safe and detectable in the cerebrospinal fluid. Exploratory biomarkers were altered in response to nilotinib. Taken together, these data will guide the development of a phase 3 study to investigate the effects of nilotinib therapy in patients with Parkinson disease. Trial Registration: ClinicalTrials.gov identifier: NCT02954978.


Assuntos
Biomarcadores/líquido cefalorraquidiano , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/tratamento farmacológico , Pirimidinas/farmacocinética , Idoso , Dopamina/líquido cefalorraquidiano , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pirimidinas/efeitos adversos , Proteínas tau/líquido cefalorraquidiano
12.
J Alzheimers Dis ; 72(2): 425-441, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31594232

RESUMO

Ubiquitin Specific Protease-13 (USP13) is a de-ubiquinating enzyme that regulates protein ubiquitination and clearance. The role of USP13 is largely unknown in neurodegeneration. In this study we aim to demonstrate whether tau accumulation and/or clearance depends on ubiquitination/de-ubiquitination via USP-13. We used transgenic animal models of human amyloid precursor protein (APP) or P301L tau mutations and genetically knocked-down USP13 expression via shRNA to determine USP13 effects on tau ubiquitination and levels. We found a two-fold increase of USP13 levels in postmortem Alzheimer's disease (AD) brains. USP13 knockdown significantly increased the activity of the 20S proteasome and reduced the levels of hyper-phosphorylated tau (p-tau) in primary cortical neurons. USP13 knockdown also reduced the levels of amyloid and increased p-tau ubiquitination and clearance in transgenic animal models that overexpress murine tau as a result of the expression of familial APP mutations (TgAPP) and the human mutant P301L tau (rTg4510), respectively. Clearance of p-tau appears to be mediated by autophagy in these animal models. Taken together, these data suggest that USP13 knockdown reduces p-tau accumulation via regulation of ubiquitination/de-ubiquitination and mediates its clearance via autophagy and/or the proteasome. These results suggest that USP13 inhibition may be a therapeutic strategy to reduce accumulation of plaques and toxic p-tau in AD and human tauopathies.


Assuntos
Doença de Alzheimer/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Química Encefálica/genética , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Placa Amiloide/patologia , Complexo de Endopeptidases do Proteassoma , RNA Interferente Pequeno , Proteases Específicas de Ubiquitina
13.
Pharmacol Res Perspect ; 7(2): e00470, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30906562

RESUMO

Nilotinib is a broad-based tyrosine kinase inhibitor with the highest affinity to inhibit Abelson (c-Abl) and discoidin domain receptors (DDR1/2). Preclinical evidence indicates that Nilotinib reduces the level of brain alpha-synuclein and attenuates inflammation in models of Parkinson's disease (PD). We previously showed that Nilotinib penetrates the blood-brain barrier (BBB) and potentially improves clinical outcomes in individuals with PD and dementia with Lewy bodies (DLB). We performed a physiologically based population pharmacokinetic/pharmacodynamic (popPK/PD) study to determine the effects of Nilotinib in a cohort of 75 PD participants. Participants were randomized (1:1:1:1:1) into five groups (n = 15) and received open-label random single dose (RSD) 150:200:300:400 mg Nilotinib vs placebo. Plasma and cerebrospinal fluid (CSF) were collected at 1, 2, 3, and 4 hours after Nilotinib administration. The results show that Nilotinib enters the brain in a dose-independent manner and 200 mg Nilotinib increases the level of 3,4-Dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), suggesting alteration to dopamine metabolism. Nilotinib significantly reduces plasma total alpha-synuclein and appears to reduce CSF oligomeric: total alpha-synuclein ratio. Furthermore, Nilotinib significantly increases the CSF level of triggering receptors on myeloid cells (TREM)-2, suggesting an anti-inflammatory effect. Taken together, 200 mg Nilotinib appears to be an optimal single dose that concurrently reduces inflammation and engages surrogate disease biomarkers, including dopamine metabolism and alpha-synuclein.


Assuntos
Encéfalo/metabolismo , Doença de Parkinson/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Ácido 3,4-Di-Hidroxifenilacético/líquido cefalorraquidiano , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Encéfalo/efeitos dos fármacos , Estudos de Coortes , Dopamina/sangue , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Método Duplo-Cego , Drogas em Investigação/administração & dosagem , Drogas em Investigação/análise , Drogas em Investigação/farmacocinética , Ácido Homovanílico/líquido cefalorraquidiano , Ácido Homovanílico/metabolismo , Humanos , Glicoproteínas de Membrana/líquido cefalorraquidiano , Pessoa de Meia-Idade , Doença de Parkinson/sangue , Placebos/administração & dosagem , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/líquido cefalorraquidiano , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Pirimidinas/sangue , Pirimidinas/líquido cefalorraquidiano , Pirimidinas/farmacocinética , Receptores Imunológicos , alfa-Sinucleína/sangue , alfa-Sinucleína/metabolismo
14.
J Neurol Sci ; 391: 90-99, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30103978

RESUMO

Tau hyperphosphorylation is a critical factor in neurodegenerative diseases, including dementia and Parkinsonism. Existing animal models of tauopathies express tau in neurons within the forebrain and do not often show tau accumulation in the brainstem and astrocytes. This study aims to understand the effects of differential regional expression of tau on neurotransmitter balance in the brain. To obtain an animal model that expresses tau in the brainstem, we bred hemizygous mice that express P301L tau (TauP301L) and detected hyper-phosphorylated tau (p-tau) predominantly in the hippocampus, cortex, brainstem and thalamus. We previously demonstrated that TauP301L mice [26] express tau under the control of a prion promoter in both neurons and astrocytes, reminiscent of human tauopathies. We treated TauP301L mice with tyrosine kinase inhibitors (TKIs) to determine the effects of tau clearance on neurotransmitter balance and astrocytic function. 13C/1H MRS reveals astrocytic dysfunction via reduced glial aspartate and impaired glutamate-glutamine cycle. An increase in glutamate and GABA and decrease in glutamine were observed in homozygous mice compared to hemizygous and control littermates. Daily treatment with TKIs, nilotinib or bosutinib led to p-tau clearance via autophagy and reversal of neurotransmitter imbalance. These data suggest that accumulation of p-tau in the brainstem does not alter dopamine metabolism but may trigger glutamate toxicity and astrocytic dysfunction in the TauP301L mouse. TKIs reverse tau effects via reversal of neurotransmitter imbalance.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Compostos de Anilina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Masculino , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Nitrilas/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Pirimidinas/farmacologia , Quinolinas/farmacologia , Tauopatias/tratamento farmacológico , Tauopatias/patologia , Proteínas tau/genética
15.
J Alzheimers Dis ; 60(2): 461-481, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28869476

RESUMO

Hyperphosphorylation and aggregation of tau protein is a critical factor in many neurodegenerative diseases. These diseases are increasing in prevalence, and there are currently no cures. Previous work from our group and others has shown that tyrosine kinase inhibitors (TKIs) can stimulate autophagy, decrease pathological proteins, and improve symptoms in models of neurodegeneration. Here we examined the role of pazopanib in mouse models that express either human mutant P301L tau (TauP301L) or triple mutant amyloid precursor protein (3x-AßPP). The TauP301L mouse expresses P301L tau under the control of a prion promoter in both neurons and astrocytes, reminiscent of some human tauopathies. Pazopanib crosses the blood-brain barrier with no detectable peripheral off-side effects, and decreases p-tau in TauP301L mice. Pazopanib reaches a brain concentration sufficient for inhibition of several tyrosine kinases, including vascular endothelial growth factor receptors (VEGFRs). Further, pazopanib does not affect microglia but reduces astrocyte levels toward nontransgenic controls in TauP301L mice. Pazopanib does not alter amyloid beta levels or astrocytes in 3x-AßPP mice but modulates a number of inflammatory markers (IP-10, MIP-1α, MIP-1ß, and RANTES). These data suggest that pazopanib may be involved in p-tau clearance and modulation of astrocytic activity in models of tauopathies.


Assuntos
Astrócitos/efeitos dos fármacos , Pirimidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Tauopatias/tratamento farmacológico , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Astrócitos/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Cognição/efeitos dos fármacos , Cognição/fisiologia , Colágeno Tipo IV/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Indazóis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Atividade Motora/efeitos dos fármacos , Mutação/genética , Neuroblastoma/patologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Pirimidinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Coloração pela Prata , Sulfonamidas/farmacologia , Tauopatias/genética , Transfecção , Resultado do Tratamento , Proteínas tau/genética
16.
Exp Neurol ; 251: 127-38, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23333589

RESUMO

Tau hyper-phosphorylation (p-Tau) and neuro-inflammation are hallmarks of neurodegeneration. Previous findings suggest that microglial activation via CX3CL1 promotes p-Tau. We examined inflammation and autophagic p-Tau clearance in lentiviral Tau and mutant P301L expressing rats and used lentiviral Aß1-42 to induce p-Tau. Lentiviral Tau or P301L expression significantly increased caspase-3 activity and TNF-α, but CX3CL1 was significantly higher in animals expressing Tau compared to P301L. Lentiviral Aß1-42 induced p-Tau 4 weeks post-injection, and increased caspase-3 activation (8-fold) and TNF-α levels. Increased levels of ADAM-10/17 were also detected with p-Tau. IL-6 levels were increased but CX3CL1 did not change in the absence of p-Tau (2 weeks); however, p-Tau reversed these effects, which were associated with increased microglial activity. We observed changes in autophagic markers, including accumulation of autophagic vacuoles (AVs) and p-Tau accumulation in autophagosomes but not lysosomes, suggesting alteration of autophagy. Taken together, microglial activation may promote p-Tau independent of total Tau levels via CX3CL1 signaling, which seems to depend on interaction with inflammatory markers, mainly IL-6. The simultaneous change in autophagy and CX3CL1 signaling suggests communication between microglia and neurons, raising the possibility that accumulation of intraneuronal amyloid, due to lack of autophagic clearance, may lead microglia activation to promote p-Tau as a tag for phagocytic degradation.


Assuntos
Autofagia/fisiologia , Quimiocina CX3CL1/metabolismo , Regulação da Expressão Gênica/fisiologia , Transdução de Sinais/fisiologia , Proteínas tau/genética , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Autofagia/genética , Caspase 3/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/ultraestrutura , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/genética , Técnicas de Transferência de Genes , Proteína Glial Fibrilar Ácida/metabolismo , Lentivirus/genética , Masculino , Microglia/metabolismo , Microglia/ultraestrutura , Mutação/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura
17.
J Mol Med (Berl) ; 92(4): 373-86, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24337465

RESUMO

UNLABELLED: Alzheimer's disease (AD) is a neurodegenerative disorder associated with amyloid accumulation and autophagic changes. Parkin is an E3 ubiquitin ligase involved in proteasomal and autophagic clearance. We previously demonstrated decreased parkin solubility and interaction with the key autophagy enzyme beclin-1 in AD, but tyrosine kinase inhibition restored parkin-beclin-1 interaction. In the current studies, we determined the mechanisms of nilotinib-induced parkin-beclin-1 interaction, which leads to amyloid clearance. Nilotinib increased endogenous parkin levels and ubiquitination, which may enhance parkin recycling via the proteasome, leading to increased activity and interaction with beclin-1. Parkin solubility was decreased and autophagy was altered in amyloid expressing mice, suggesting that amyloid stress affects parkin stability, leading to failure of protein clearance via the lysosome. Isolation of autophagic vacuoles revealed amyloid and parkin accumulation in autophagic compartments but nilotinib decreased insoluble parkin levels and facilitated amyloid deposition into lysosomes in wild type, but not parkin(-/-) mice, further underscoring an essential role for endogenous parkin in amyloid clearance. These results suggest that nilotinib boosts the autophagic machinery, leading to increased level of endogenous parkin that undergoes ubiquitination and interacts with beclin-1 to facilitate amyloid clearance. These data suggest that nilotinib-mediated autophagic changes may trigger parkin response via increased protein levels, providing a therapeutic strategy to reduce Aß and Tau in AD. KEY MESSAGE: Parkin solubility (stability) is decreased in AD and APP transgenic mice. Nilotinib-induced autophagic changes increase endogenous parkin level. Increased parkin level leads to ubiquitination and proteasomal recycling. Re-cycling decreases insoluble parkin and increases parkin-beclin-1 interaction. Beclin-1-parkin interaction enhances amyloid clearance.


Assuntos
Amiloide/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos , Doença de Alzheimer/enzimologia , Animais , Autofagia , Linhagem Celular Tumoral , Estabilidade Enzimática , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos
18.
J Clin Cell Immunol ; 5: 259, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25635231

RESUMO

OBJECTIVES: Neuro-inflammation is common in α-Synucleinopathies and Tauopathies; and evidence suggests a link between the tyrosine kinase Abl and neurodegeneration. Abl upregulates α-Synuclein and promotes Tau hyper-phosphorylation (p-Tau), while Abl inhibitors facilitate autophagic clearance. METHODS: A model of α-Synucleinopathy harboring human mutant A53T α-Synuclein and exhibits concomitant increase in murine p-Tau was used to determine the immunological response to Abl inhibition. RESULTS: Age-dependent alterations of brain immunity, including loss of IL-10 and decreased levels of IL-2 and IL-3 were observed in old A53T mice. Brain CCL2 and CCL5 were decreased, but CX3CL1 remained constantly elevated. Young A53T mice exhibited differential systemic and central immune profiles in parallel with increased blood markers of adaptive immunity, suggesting an early systemic immune response. Tyrosine kinase inhibitors (TKIs), including nilotinib and bosutinib reduced brain and peripheral α-Synuclein and p-Tau and modulated blood immunological responses. TKIs did not affect brain IL-10, but they changed the levels of all measured blood immune markers, except CX3CL1. TKIs altered microglia morphology and reduced the number of astrocyte and dendritic cells, suggesting beneficial regulation of microglia. CONCLUSIONS: These data indicate that tyrosine kinase inhibition affects neuro-inflammation via early changes of the peripheral immune profile, leading to modulation of the neuro-immune response to α-Synuclein and p-Tau.

19.
Autophagy ; 9(8): 1249-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23787811

RESUMO

The effects of ABL1/ABL inhibition on clearance of SNCA/α-synuclein were evaluated in animal models of α-synucleinopathies. Parkinson disease (PD) is a movement disorder characterized by death of dopaminergic substantia nigra (SN) neurons and brain accumulation of SNCA. The tyrosine kinase ABL1 is activated in several neurodegenerative diseases. An increase in ABL1 activity is detected in human postmortem PD brains. Lentiviral expression of SNCA in the mouse SN activates ABL1 via phosphorylation, while lentiviral Abl expression increases SNCA levels. Administration of the brain-penetrant tyrosine kinase inhibitor Nilotinib decreases Abl activity and facilitates autophagic clearance of SNCA in transgenic and lentiviral gene transfer models. Subcellular fractionation demonstrates accumulation of SNCA and hyperphosphorylated MAPT/Tau (p-MAPT) in autophagic vacuoles in SNCA-expressing brains, while Nilotinib treatment leads to protein deposition into the lysosomes, suggesting enhanced autophagic clearance. These data suggest that Nilotinib may be a therapeutic strategy to degrade SNCA in PD and other α-synucleinopathies.


Assuntos
Autofagia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Pirimidinas/farmacologia , alfa-Sinucleína/metabolismo , Animais , Humanos , Masculino
20.
EMBO Mol Med ; 5(8): 1247-62, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23737459

RESUMO

Tyrosine kinase inhibitors (TKIs) are effective therapies for leukaemia. Alzheimer is a neurodegenerative disease characterized by accumulation of ß-amyloid (plaques) and hyper-phosphorylated Tau (tangles). Here we show that AD animals have high levels of insoluble parkin and decreased parkin-Beclin-1 interaction, while peripheral administration of TKIs, including Nilotinib and Bosutinib, increases soluble parkin leading to amyloid clearance and cognitive improvement. Blocking Beclin-1 expression with shRNA or parkin deletion prevents tyrosine kinase (TK) inhibition-induced amyloid clearance, suggesting that functional parkin-Beclin-1 interaction mediates amyloid degradation. Isolation of autophagic vacuoles (AVs) in AD mouse brain shows accumulation of parkin and amyloid, consistent with previous results in AD brains, while Bosutinib and Nilotinib increase parkin-Beclin-1 interaction and result in protein deposition in the lysosome. These data suggest that decreased parkin solubility impedes parkin-Beclin-1 interaction and amyloid clearance. We identified two FDA-approved anti-cancer drugs as potential treatment for AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Cognição/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacologia , Proteína Beclina-1 , Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Humanos , Camundongos , Doenças Neurodegenerativas/metabolismo , Nitrilas/farmacologia , Fosforilação , Pirimidinas/farmacologia , Quinolinas/farmacologia , RNA Interferente Pequeno/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA