Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nano Lett ; 22(17): 6982-6987, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35998329

RESUMO

Visible and infrared photons can be detected with a broadband response via the internal photoeffect. By use of plasmonic nanostructures, i.e., nanoantennas, wavelength selectivity can be introduced to such detectors through geometry-dependent resonances. Also, additional functionality, like electronic responsivity switching and polarization detection, has been realized. However, previous devices consisted of large arrays of nanostructures to achieve detectable photocurrents. Here we show that this concept can be scaled down to a single antenna level, resulting in detector dimensions well below the resonance wavelength of the device. Our design consists of a single electrically connected plasmonic nanoantenna covered with a wide-bandgap semiconductor allowing broadband photodetection in the visible/near-infrared via injection of hot carriers. We demonstrate electrical switching of the color sensitivity as well as polarization detection. Our results hold promise for the realization of ultrasmall photodetectors with advanced functionality.

2.
Nano Lett ; 22(3): 1032-1038, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35001635

RESUMO

Future photonic devices require efficient, multifunctional, electrically driven light sources with directional emission properties and subwavelength dimensions. Electrically driven plasmonic nanoantennas have been demonstrated as enabling technology. Here, we present the concept of a nanoscale organic light-emitting antenna (OLEA) as a color- and directionality-switchable point source. The device consists of laterally arranged electrically contacted gold nanoantennas with their gap filled by the organic semiconductor zinc phthalocyanine (ZnPc). Since ZnPc shows preferred hole conduction in combination with gold, the recombination zone relocates depending on the polarity of the applied voltage and couples selectively to either of the two antennas. Thereby, the emission characteristics of the device also depend on polarity. Contrary to large-area OLEDs where recombination at metal contacts significantly contributes to losses, our ultracompact OLEA structures facilitate efficient radiation into the far-field rendering transparent electrodes obsolete. We envision OLEA structures to serve as wavelength-scale pixels with tunable color and directionality for advanced display applications.

3.
Nano Lett ; 22(4): 1786-1794, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35129980

RESUMO

Nanoparticle-on-mirror plasmonic nanocavities, capable of extreme optical confinement and enhancement, have triggered state-of-the-art progress in nanophotonics and development of applications in enhanced spectroscopies. However, the optical quality factor and thus performance of these nanoconstructs are undermined by the granular polycrystalline metal films (especially when they are optically thin) used as a mirror. Here, we report an atomically smooth single-crystalline platform for low-loss nanocavities using chemically synthesized gold microflakes as a mirror. Nanocavities constructed using gold nanorods on such microflakes exhibit a rich structure of plasmonic modes, which are highly sensitive to the thickness of optically thin (down to ∼15 nm) microflakes. The microflakes endow nanocavities with significantly improved quality factor (∼2 times) and scattering intensity (∼3 times) compared with their counterparts based on deposited films. The developed low-loss nanocavities further allow for the integration with a mature platform of fiber optics, opening opportunities for realizing nanocavity-based miniaturized photonic devices for practical applications.


Assuntos
Nanopartículas , Nanotubos , Ouro/química , Óptica e Fotônica , Fótons
4.
Nano Lett ; 21(10): 4225-4230, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33929199

RESUMO

The electrical excitation of guided plasmonic modes at the nanoscale enables integration of optical nanocircuitry into nanoelectronics. In this context, exciting plasmons with a distinct modal field profile constitutes a key advantage over conventional single-mode integrated photonics. Here, we demonstrate the selective electrical excitation of the lowest-order symmetric and antisymmetric plasmonic modes in a two-wire transmission line. We achieve mode selectivity by precisely positioning nanoscale excitation sources, i.e., junctions for inelastic electron tunneling, within the respective modal field distribution. By using advanced fabrication that combines focused He-ion beam milling and dielectrophoresis, we control the location of tunnel junctions with sub-10 nm accuracy. At the far end of the two-wire transmission line, the guided plasmonic modes are converted into far-field radiation at separate spatial positions showing two distinct orthogonal polarizations. Hence, the resulting device represents the smallest electrically driven light source with directly switchable polarization states with possible applications in display technology.

5.
Nano Lett ; 19(5): 3364-3369, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31013109

RESUMO

The photon spin is an important resource for quantum information processing as is the electron spin in spintronics. However, for subwavelength confined optical excitations, polarization as a global property of a mode cannot be defined. Here, we show that any polarization state of a plane-wave photon can reversibly be mapped to a pseudospin embodied by the two fundamental modes of a subwavelength plasmonic two-wire transmission line. We design a device in which this pseudospin evolves in a well-defined fashion throughout the device reminiscent of the evolution of photon polarization in a birefringent medium and the behavior of electron spins in the channel of a spin field-effect transistor. The significance of this pseudospin is enriched by the fact that it is subject to spin-orbit locking. Combined with optically active materials to exert external control over the pseudospin precession, our findings could enable spin-optical transistors, that is, the routing and processing of quantum information with light on a subwavelength scale.

6.
Nano Lett ; 19(10): 7013-7020, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31461291

RESUMO

The optimization of nonlinear optical processes on the nanoscale is a crucial step for the integration of complex functionalities into compact photonic devices and metasurfaces. In such systems, photon upconversion can be achieved with higher efficiencies via third-order processes, such as third-harmonic generation (THG), thanks to the resonantly enhanced volume currents. Conversely, second-order processes, such as second-harmonic generation (SHG), are often inhibited by the symmetry of metal lattices and of common nanoantenna geometries. SHG and THG processes in plasmonic nanostructures are generally treated independently because they typically represent small perturbations in the light-matter interaction mechanisms. In this work, we demonstrate that this paradigm does not hold for plasmon-enhanced nonlinear optics by providing evidence of a sum-frequency generation (SFG) process seeded by SHG, which sizably contributes to the overall THG yield. We address this mechanism by unveiling a characteristic fingerprint in the polarization state of the THG emission from gold noncentrosymmetric nanoantennas, which directly reflects the asymmetric distribution of second-harmonic fields within the structure and does not depend on the model one employs to describe photon upconversion. We suggest that such cascaded processes may also appear for structures that exhibit only moderate SHG yields. The presence of this peculiar mechanism in THG from plasmonic nanoantennas at telecommunication wavelengths allows us to gain further insight into the physics of plasmon-enhanced nonlinear optical processes. This could be crucial in the realization of nanoscale elements for photon conversion and manipulation operating at room temperature.

7.
Nano Lett ; 19(7): 4651-4658, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31181160

RESUMO

Plasmonic resonators can be designed to support spectrally well-separated discrete modes. The associated characteristic spatial patterns of intense electromagnetic hot-spots can be exploited to enhance light-matter interaction. Here, we study the local field dynamics of individual hot-spots within a nanoslit resonator by detecting characteristic changes of the photoelectron emission signal on a scale of ∼12 nm using time-resolved photoemission electron microscopy (TR-PEEM) and by excitation with the output from a 20 fs, 1 MHz noncollinear optical parametric amplifier (NOPA). Surprisingly, we detect apparent spatial variations of the Q-factor and resonance frequency that are commonly considered to be global properties for a single mode. By using the concept of quasinormal modes we explain these local differences by crosstalk of adjacent resonator modes. Our findings are important in view of time-domain studies of plasmon-mediated strong light-matter coupling at ambient conditions.

8.
Phys Rev Lett ; 122(24): 246802, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31322365

RESUMO

Gold nanostructures have important applications in nanoelectronics, nano-optics, and in precision metrology due to their intriguing optoelectronic properties. These properties are governed by the bulk band structure but to some extent are tunable via geometrical resonances. Here we show that the band structure of gold itself exhibits significant size-dependent changes already for mesoscopic critical dimensions below 30 nm. To suppress the effects of geometrical resonances and grain boundaries, we prepared atomically flat ultrathin films of various thicknesses by utilizing large chemically grown single-crystalline gold platelets. We experimentally probe thickness-dependent changes of the band structure by means of two-photon photoluminescence and observe a surprising 100-fold increase of the nonlinear signal when the gold film thickness is reduced below 30 nm allowing us to optically resolve single-unit-cell steps. The effect is well explained by density functional calculations of the thickness-dependent 2D band structure of gold.

9.
Nano Lett ; 17(7): 4291-4296, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28590750

RESUMO

Quantum photonics holds great promise for future technologies such as secure communication, quantum computation, quantum simulation, and quantum metrology. An outstanding challenge for quantum photonics is to develop scalable miniature circuits that integrate single-photon sources, linear optical components, and detectors on a chip. Plasmonic nanocircuits will play essential roles in such developments. However, for quantum plasmonic circuits, integration of stable, bright, and narrow-band single photon sources in the structure has so far not been reported. Here we present a plasmonic nanocircuit driven by a self-assembled GaAs quantum dot. Through a planar dielectric-plasmonic hybrid waveguide, the quantum dot efficiently excites narrow-band single plasmons that are guided in a two-wire transmission line until they are converted into single photons by an optical antenna. Our work demonstrates the feasibility of fully on-chip plasmonic nanocircuits for quantum optical applications.

10.
Opt Express ; 25(10): 10828-10842, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788771

RESUMO

Nanoantennas can tailor light-matter interaction for optical communication, sensing, and spectroscopy. Their design is inspired by radio-frequency rules which partly break down at optical frequencies. Here we find unexpected nanoantenna designs exhibiting strong light localization and enhancement by using a general and scalable evolutionary algorithm based on FDTD simulations that also accounts for geometrical fabrication constraints. The resulting nanoantennas are "printed" directly by focused-ion beam milling and their fitness ranking is validated experimentally by two-photon photoluminescence. We find the best antennas' operation principle deviating from that of classical radio wave-inspired designs. Our work sets the stage for a widespread application of evolutionary optimization in nano photonics.

11.
Phys Rev Lett ; 119(21): 217401, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29219389

RESUMO

The emission rate of a point dipole can be strongly increased in the presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring, e.g., Ohmic losses and non-negligible field penetration in metals at optical frequencies. Here, we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance compared to a reference two-wire antenna. Our work will be useful for the design of high-performance optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.

12.
Nano Lett ; 16(4): 2680-5, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27002492

RESUMO

Coupling mechanical degrees of freedom with plasmonic resonances has potential applications in optomechanics, sensing, and active plasmonics. Here we demonstrate a suspended two-wire plasmonic nanoantenna acting like a nanoelectrometer. The antenna wires are supported and electrically connected via thin leads without disturbing the antenna resonance. As a voltage is applied, equal charges are induced on both antenna wires. The resulting equilibrium between the repulsive Coulomb force and the restoring elastic bending force enables us to precisely control the gap size. As a result the resonance wavelength and the field enhancement of the suspended optical nanoantenna can be reversibly tuned. Our experiments highlight the potential to realize large bandwidth optical nanoelectromechanical systems.

13.
Nano Lett ; 16(11): 6832-6837, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27723356

RESUMO

The design of noble-metal plasmonic devices and nanocircuitry requires a fundamental understanding and control of the interference of plasmonic modes. Here we report the first visualization of the propagation and interference of guided modes in a showcase plasmonic nanocircuit using normal-incidence nonlinear two-photon photoemission electron microscopy (PEEM). We demonstrate that in contrast to the commonly used grazing-incidence illumination scheme, normal-incidence PEEM provides a direct image of the structure's near-field intensity distribution due to the absence of beating patterns and despite the transverse character of the plasmonic modes. Based on a simple heuristic numerical model for the photoemission yield, we are able to model all experimental findings if global plane wave illumination and coupling to multiple input/output ports, and the resulting interference effects are accounted for.

14.
Nano Lett ; 15(10): 6862-8, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26312732

RESUMO

Single femtosecond optical laser pulses, of sufficient intensity, are demonstrated to reverse magnetization in a process known as all-optical switching. Gold two-wire antennas are placed on the all-optical switching film TbFeCo. These structures are resonant with the optical field, and they create a field enhancement in the near-field which confines the area where optical switching can occur. The magnetic switching that occurs around and below the antenna is imaged using resonant X-ray holography and magnetic circular dichroism. The results not only show the feasibility of controllable switching with antenna assistance but also demonstrate the highly inhomogeneous nature of the switching process, which is attributed to the process depending on the material's heterogeneity.

15.
Opt Express ; 22(25): 31496-510, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25607100

RESUMO

We describe a setup consisting of a 4f pulse shaper and a microscope with a high-NA objective lens and discuss the aspects most relevant for an undistorted spatiotemporal profile of the focused beam. We demonstrate shaper-assisted pulse compression in focus to a sub-10-fs duration using phase-resolved interferometric spectral modulation (PRISM). We introduce a nanostructure-based method for sub-diffraction spatiotemporal characterization of strongly focused pulses. The distortions caused by optical aberrations and space-time coupling from the shaper can be reduced by careful setup design and alignment to about 10 nm in space and 1 fs in time.

16.
Phys Rev Lett ; 111(18): 183901, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24237520

RESUMO

We experimentally demonstrate synthesis and in situ analysis of multimode plasmonic excitations in two-wire transmission lines supporting a symmetric and an antisymmetric eigenmode. To this end we irradiate an incoupling antenna with a diffraction-limited excitation spot exploiting a polarization- and position-dependent excitation efficiency. Modal analysis is performed by recording the far-field emission of two mode-specific spatially separated emission spots at the far end of the transmission line. To illustrate the power of the approach we selectively determine the group velocities of symmetric and antisymmetric contributions of a multimode ultrafast plasmon pulse.


Assuntos
Nanoestruturas/química , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície
17.
Nano Lett ; 12(8): 3915-9, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22800440

RESUMO

Electrically connected resonant optical antennas hold promise for the realization of highly efficient nanoscale electro-plasmonic devices that rely on a combination of electric fields and local near-field intensity enhancement. Here we demonstrate the feasibility of such a concept by attaching leads to the arms of a two-wire antenna at positions of minimal near-field intensity with negligible influence on the antenna resonance. White-light scattering experiments in accordance with simulations show that the optical tunability of connected antennas is fully retained. Analysis of the electric properties demonstrates that in the antenna gaps direct current (DC) electric fields of 10(8) V/m can consistently be achieved and maintained over extended periods of time without noticeable damage.

18.
Nano Lett ; 12(6): 2941-7, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22551099

RESUMO

Two-pulse correlation is employed to investigate the temporal dynamics of both two-photon photoluminescence (2PPL) and four-photon photoluminescence (4PPL) in resonant and nonresonant nanoantennas excited at a wavelength of 800 nm. Both 2PPL and 4PPL data are consistent with the same two-step model already established for 2PPL, implying that the first excitation step in 4PPL is a three-photon sp → sp direct interband transition. Considering energy and parity conservation, we also explain why 4PPL behavior is favored over, for example, three- and five-photon photoluminescence in the power range below the damage threshold of our antennas. Since sizable 4PPL requires larger peak intensities of the local field, we are able to select either 2PPL or 4PPL in the same gold nanoantennas by choosing a suitable laser pulse duration. We thus provide a first consistent model for the understanding of multiphoton photoluminescence generation in gold nanoantennas, opening new perspectives for applications ranging from the characterization of plasmonic resonances to biomedical imaging.


Assuntos
Ouro/química , Medições Luminescentes/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Teste de Materiais , Tamanho da Partícula , Fótons
19.
Nano Lett ; 12(11): 5504-9, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22984927

RESUMO

In the presence of matter, there is no fundamental limit preventing confinement of visible light even down to atomic scales. Achieving such confinement and the corresponding resonant intensity enhancement inevitably requires simultaneous control over atomic-scale details of material structures and over the optical modes that such structures support. By means of self-assembly we have obtained side-by-side aligned gold nanorod dimers with robust atomically defined gaps reaching below 0.5 nm. The existence of atomically confined light fields in these gaps is demonstrated by observing extreme Coulomb splitting of corresponding symmetric and antisymmetric dimer eigenmodes of more than 800 meV in white-light scattering experiments. Our results open new perspectives for atomically resolved spectroscopic imaging, deeply nonlinear optics, ultrasensing, cavity optomechanics, as well as for the realization of novel quantum-optical devices.


Assuntos
Nanotecnologia/métodos , Óptica e Fotônica , Dimerização , Campos Eletromagnéticos , Ouro/química , Luz , Nanopartículas Metálicas/química , Nanotubos , Teoria Quântica , Espalhamento de Radiação , Espectrofotometria/métodos
20.
Nano Lett ; 12(1): 45-9, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22185223

RESUMO

Spectral interferometry is employed to fully characterize amplitude and phase of propagating plasmons that are transmitted through silver nanowires in the form of ultrashort pulses. For nanowire diameters below 100 nm, the plasmon group velocity is found to decrease drastically in accordance with the theory of adiabatic focusing. Furthermore, the dependence of the plasmon group velocity on the local nanowire environment is demonstrated. Our findings are of relevance for the design and implementation of nanoplasmonic signal processing and in view of coherent control applications.


Assuntos
Interferometria/métodos , Luz , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície/métodos , Teste de Materiais , Refratometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA