Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Mol Med ; 22: 830-840, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27782294

RESUMO

Studies imply that intestinal barrier dysfunction is a key contributor to morbid events associated with sepsis. Recently, co-inhibitory molecule, programmed death-ligand1 (PD-L1) has been shown to be involved in the regulation of intestinal immune tolerance and/or inflammation. Our previous studies showed that PD-L1 gene deficiency reduced sepsis-induced intestinal injury morphologically. However, it isn't known how PD-L1 expression impacts intestinal barrier dysfunction during sepsis. Here we tested the hypothesis that PD-L1 expressed on intestinal epithelial cells (IECs) has a role in sepsis-induced intestinal barrier dysfunction. To address this, C57BL/6 or PD-L1 gene knockout mice were subjected to experimental sepsis and PD-L1 expression, intestinal permeability, tissue cytokine levels were assessed. Subsequently, septic or non-septic patient colonic samples (assigned by pathology report) were immunohistochemically stained for PD-L1 I a blinded fashion. Finally, human Caco2 cells were used for in vitro studies. The results demonstrated that PD-L1 was constitutively expressed and sepsis significantly up-regulates PD-L1 in IECs from C57BL/6 mice. Concurrently, we observed an increased PD-L1 expression in colon tissue samples from septic patients. PD-L1 gene deficiency reduced ileal permeability, tissue levels of IL-6, TNF-α and MCP-1, and prevented ileal tight junction protein loss compared to WT after sepsis. Comparatively, while Caco2 cell monolayers responded to inflammatory cytokine stimulation also with elevated PD-L1 expression, increased monolayer permeability and altering/decreasing monolayer tight junction protein morphology/expression; these changes were reversed by PD-L1 blocking antibody. Together these data indicate that ligation of ICE PD-L1 plays a novel role in mediating the pathophysiology of sepsis-induced intestinal barrier dysfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA