Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Pathog ; 9(8): e1003546, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950716

RESUMO

Malaria blood stage parasites export a large number of proteins into their host erythrocyte to change it from a container of predominantly hemoglobin optimized for the transport of oxygen into a niche for parasite propagation. To understand this process, it is crucial to know which parasite proteins are exported into the host cell. This has been aided by the PEXEL/HT sequence, a five-residue motif found in many exported proteins, leading to the prediction of the exportome. However, several PEXEL/HT negative exported proteins (PNEPs) indicate that this exportome is incomplete and it remains unknown if and how many further PNEPs exist. Here we report the identification of new PNEPs in the most virulent malaria parasite Plasmodium falciparum. This includes proteins with a domain structure deviating from previously known PNEPs and indicates that PNEPs are not a rare exception. Unexpectedly, this included members of the MSP-7 related protein (MSRP) family, suggesting unanticipated functions of MSRPs. Analyzing regions mediating export of selected new PNEPs, we show that the first 20 amino acids of PNEPs without a classical N-terminal signal peptide are sufficient to promote export of a reporter, confirming the concept that this is a shared property of all PNEPs of this type. Moreover, we took advantage of newly found soluble PNEPs to show that this type of exported protein requires unfolding to move from the parasitophorous vacuole (PV) into the host cell. This indicates that soluble PNEPs, like PEXEL/HT proteins, are exported by translocation across the PV membrane (PVM), highlighting protein translocation in the parasite periphery as a general means in protein export of malaria parasites.


Assuntos
Membrana Celular/metabolismo , Plasmodium falciparum/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Proteínas de Protozoários/metabolismo , Animais , Membrana Celular/genética , Camundongos , Plasmodium falciparum/genética , Transporte Proteico/fisiologia , Proteínas de Protozoários/genética
2.
Mol Microbiol ; 71(4): 1003-17, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19170882

RESUMO

A short motif termed Plasmodium export element (PEXEL) or vacuolar targeting signal (VTS) characterizes Plasmodium proteins exported into the host cell. These proteins mediate host cell modifications essential for parasite survival and virulence. However, several PEXEL-negative exported proteins indicate that the currently predicted malaria exportome is not complete and it is unknown whether and how these proteins relate to PEXEL-positive export. Here we show that the N-terminal 10 amino acids of the PEXEL-negative exported protein REX2 (ring-exported protein 2) are necessary for its targeting and that a single-point mutation in this region abolishes export. Furthermore we show that the REX2 transmembrane domain is also essential for export and that together with the N-terminal region it is sufficient to promote export of another protein. An N-terminal region and the transmembrane domain of the unrelated PEXEL-negative exported protein SBP1 (skeleton-binding protein 1) can functionally replace the corresponding regions in REX2, suggesting that these sequence features are also present in other PEXEL-negative exported proteins. Similar to PEXEL proteins we find that REX2 is processed, but in contrast, detect no evidence for N-terminal acetylation.


Assuntos
Proteínas de Membrana/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Eritrócitos/parasitologia , Proteínas de Membrana/genética , Dados de Sequência Molecular , Plasmodium falciparum/genética , Mutação Puntual , Transporte Proteico , Proteínas de Protozoários/genética , Alinhamento de Sequência , Deleção de Sequência
3.
BMC Proc ; 14(Suppl 14): 14, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33292237

RESUMO

The international CIHLMU Occupational Safety and Health Symposium 2019 was held on 16th March, 2019 at the Ludwig-Maximilians-Universität Munich, Germany. About 60 participants from around the world representing occupational health and safety professionals, students, instructors from several institutions in Germany and abroad, attended the symposium.The main objective of the symposium was to create awareness on global challenges and opportunities in work-related respiratory diseases. One keynote lecture and six presentations were made. While the keynote lecture addressed issues on occupational diseases in the twenty-first century, the six presentations were centered on: Prevention and control of work-related respiratory diseases, considerations; Occupational health and safety in Mining: Respiratory diseases; The prevention of TB among health workers is our collective responsibility; Compensation and prevention of occupational diseases and discussion on how artificial intelligence can support them: Overview of international approaches; Work-related Asthma: Evidence from high-income countries; and The role of imaging in the diagnosis of work- related respiratory diseases. A panel discussion was conducted following the presentations on the importance and challenges of data acquisition which is needed to have a realistic picture of the occupational safety and health status of workers at different levels. The current summary is an attempt to share the proceedings of the symposium.

4.
Nat Commun ; 7: 11659, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225796

RESUMO

Sequestration of red blood cells infected with the human malaria parasite Plasmodium falciparum in organs such as the brain is considered important for pathogenicity. A similar phenomenon has been observed in mouse models of malaria, using the rodent parasite Plasmodium berghei, but it is unclear whether the P. falciparum proteins known to be involved in this process are conserved in the rodent parasite. Here we identify the P. berghei orthologues of two such key factors of P. falciparum, SBP1 and MAHRP1. Red blood cells infected with P. berghei parasites lacking SBP1 or MAHRP1a fail to bind the endothelial receptor CD36 and show reduced sequestration and virulence in mice. Complementation of the mutant P. berghei parasites with the respective P. falciparum SBP1 and MAHRP1 orthologues restores sequestration and virulence. These findings reveal evolutionary conservation of the machinery underlying sequestration of divergent malaria parasites and support the notion that the P. berghei rodent model is an adequate tool for research on malaria virulence.


Assuntos
Eritrócitos/parasitologia , Malária/parasitologia , Plasmodium berghei/patogenicidade , Plasmodium falciparum/patogenicidade , Sequência de Aminoácidos , Animais , Antígenos CD36/metabolismo , Humanos , Camundongos , Filogenia , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Ligação Proteica , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Virulência/genética
5.
Cell Host Microbe ; 12(5): 717-29, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23159060

RESUMO

For proliferation, the malaria parasite Plasmodium falciparum needs to modify the infected host cell extensively. To achieve this, the parasite exports proteins containing a Plasmodium export element (PEXEL) into the host cell. Phosphatidylinositol-3-phosphate binding and cleavage of the PEXEL are thought to mediate protein export. We show that these requirements can be bypassed, exposing a second level of export control in the N terminus generated after PEXEL cleavage that is sufficient to distinguish exported from nonexported proteins. Furthermore, this region also corresponds to the export domain of a second group of exported proteins lacking PEXELs (PNEPs), indicating shared export properties among different exported parasite proteins. Concordantly, export of both PNEPs and PEXEL proteins depends on unfolding, revealing translocation as a common step in export. However, translocation of transmembrane proteins occurs at the parasite plasma membrane, one step before translocation of soluble proteins, indicating unexpectedly complex translocation events at the parasite periphery.


Assuntos
Proteínas de Transporte/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Transporte Proteico , Desdobramento de Proteína , Proteínas de Protozoários/química
6.
Nat Commun ; 2: 165, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21266965

RESUMO

Blood stages of Plasmodium falciparum cause the pathology of malaria; however, the progression of the parasite through this complex part of the life cycle has never been visualized. In this study, we use four-dimensional imaging to show for the first time the development of individual parasites in erythrocytes and the concomitant host cell modifications. Our data visualize an unexpectedly dynamic parasite, provide a reference for this life cycle stage and challenge the model that protein export in P. falciparum is linked to the biogenesis of host cell modifications termed Maurer's clefts. Our results provide a novel view of the blood-stage development, Maurer's cleft development and protein export in malaria parasites, and open the door to study dynamic processes, drug effects and the phenotype of mutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA