Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant J ; 101(6): 1258-1268, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31845400

RESUMO

Roots, tubers, and bananas (RTB) are vital staples for food security in the world's poorest nations. A major constraint to current RTB breeding programmes is limited knowledge on the available diversity due to lack of efficient germplasm characterization and structure. In recent years large-scale efforts have begun to elucidate the genetic and phenotypic diversity of germplasm collections and populations and, yet, biochemical measurements have often been overlooked despite metabolite composition being directly associated with agronomic and consumer traits. Here we present a compound database and concentration range for metabolites detected in the major RTB crops: banana (Musa spp.), cassava (Manihot esculenta), potato (Solanum tuberosum), sweet potato (Ipomoea batatas), and yam (Dioscorea spp.), following metabolomics-based diversity screening of global collections held within the CGIAR institutes. The dataset including 711 chemical features provides a valuable resource regarding the comparative biochemical composition of each RTB crop and highlights the potential diversity available for incorporation into crop improvement programmes. Particularly, the tropical crops cassava, sweet potato and banana displayed more complex compositional metabolite profiles with representations of up to 22 chemical classes (unknowns excluded) than that of potato, for which only metabolites from 10 chemical classes were detected. Additionally, over 20% of biochemical signatures remained unidentified for every crop analyzed. Integration of metabolomics with the on-going genomic and phenotypic studies will enhance 'omics-wide associations of molecular signatures with agronomic and consumer traits via easily quantifiable biochemical markers to aid gene discovery and functional characterization.


Assuntos
Produtos Agrícolas/metabolismo , Bases de Dados como Assunto , Metaboloma , Musa/metabolismo , Melhoramento Vegetal , Raízes de Plantas/metabolismo , Tubérculos/metabolismo , Metabolômica/métodos , Melhoramento Vegetal/métodos
2.
BMC Genomics ; 22(1): 262, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849443

RESUMO

BACKGROUND: Sweetpotato (Ipomoea batatas [L.] Lam.) is an important food crop. However, the genetic information of the nuclear genome of this species is difficult to determine accurately because of its large genome and complex genetic background. This drawback has limited studies on the origin, evolution, genetic diversity and other relevant studies on sweetpotato. RESULTS: The chloroplast genomes of 107 sweetpotato cultivars were sequenced, assembled and annotated. The resulting chloroplast genomes were comparatively analysed with the published chloroplast genomes of wild species of sweetpotato. High similarity and certain specificity were found among the chloroplast genomes of Ipomoea spp. Phylogenetic analysis could clearly distinguish wild species from cultivars. Ipomoea trifida and Ipomoea tabascana showed the closest relationship with the cultivars, and different haplotypes of ycf1 could be used to distinguish the cultivars from their wild relatives. The genetic structure was analyzed using variations in the chloroplast genome. Compared with traditional nuclear markers, the chloroplast markers designed based on the InDels on the chloroplast genome showed significant advantages. CONCLUSIONS: Comparative analysis of chloroplast genomes of 107 cultivars and several wild species of sweetpotato was performed to help analyze the evolution, genetic structure and the development of chloroplast DNA markers of sweetpotato.


Assuntos
Genoma de Cloroplastos , Ipomoea batatas , Ipomoea , Genoma de Planta , Ipomoea/genética , Ipomoea batatas/genética , Filogenia
4.
Mol Plant ; 17(2): 277-296, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38155570

RESUMO

The hexaploid sweetpotato (Ipomoea batatas) is one of the most important root crops worldwide. However, its genetic origin remains controversial, and its domestication history remains unknown. In this study, we used a range of genetic evidence and a newly developed haplotype-based phylogenetic analysis to identify two probable progenitors of sweetpotato. The diploid progenitor was likely closely related to Ipomoea aequatoriensis and contributed the B1 subgenome, IbT-DNA2, and the lineage 1 type of chloroplast genome to sweetpotato. The tetraploid progenitor of sweetpotato was most likely I. batatas 4x, which donated the B2 subgenome, IbT-DNA1, and the lineage 2 type of chloroplast genome. Sweetpotato most likely originated from reciprocal crosses between the diploid and tetraploid progenitors, followed by a subsequent whole-genome duplication. In addition, we detected biased gene exchanges between the subgenomes; the rate of B1 to B2 subgenome conversions was nearly three times higher than that of B2 to B1 subgenome conversions. Our analyses revealed that genes involved in storage root formation, maintenance of genome stability, biotic resistance, sugar transport, and potassium uptake were selected during the speciation and domestication of sweetpotato. This study sheds light on the evolution of sweetpotato and paves the way for improvement of this crop.


Assuntos
Genoma de Planta , Metagenômica , Filogenia , Tetraploidia , Haplótipos , Domesticação
5.
Arch Virol ; 157(4): 773-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22227800

RESUMO

In 2010, yam beans in a field trial in Peru showed viral disease symptoms. Graft-transmission and positive ELISA results using potyvirus-specific antibodies suggested that the symptoms could be the result of a potyviral infection. Small interfering RNA (siRNA) were extracted from one of the samples and sent for high-throughput sequencing. The full genome of a new potyvirus could be assembled from the resulting siRNA sequences, and it was sufficiently different from other sequences to be considered a member of a new species, which we have designated Yam bean mosaic virus (YBMV). Sequence similarity suggests that YBMV has also been detected in yam beans in Indonesia.


Assuntos
Genoma Viral , Pachyrhizus/virologia , Doenças das Plantas/virologia , Potyvirus/genética , Potyvirus/isolamento & purificação , RNA Viral/genética , Análise por Conglomerados , Dados de Sequência Molecular , Peru , Filogenia , RNA Interferente Pequeno/genética , Análise de Sequência de DNA , Homologia de Sequência
6.
Data Brief ; 42: 108041, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35341032

RESUMO

Biochemical characterisation of germplasm collections and crop wild relatives (CWRs) facilitates the assessment of biological potential and the selection of breeding lines for crop improvement. Data from the biochemical characterisation of staple root, tuber and banana (RTB) crops, i.e. banana (Musa spp.), cassava (Manihot esculenta), potato (Solanum tuberosum), sweet potato (Ipomoea batatas) and yam (Dioscorea spp.), using a metabolomics approach is presented. The data support the previously published research article "Metabolite database for root, tuber, and banana crops to facilitate modern breeding in understudied crops" (Price et al., 2020) [1]. Diversity panels for each crop, which included a variety of species, accessions, landraces and CWRs, were characterised. The biochemical profile for potato was based on five elite lines under abiotic stress. Metabolites were extracted from the tissue of foliage and storage organs (tuber, root and banana pulp) via solvent partition. Extracts were analysed via a combination of liquid chromatography - mass spectrometry (LC-MS), gas chromatography (GC)-MS, high pressure liquid chromatography with photodiode array detector (HPLC-PDA) and ultra performance liquid chromatography (UPLC)-PDA. Metabolites were identified by mass spectral matching to in-house libraries comprised from authentic standards and comparison to databases or previously published literature.

7.
Front Plant Sci ; 11: 567507, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013990

RESUMO

Crop wild relatives of sweetpotato [Ipomoea series Batatas (Choisy) D. F. Austin] are a group of species with potential for use in crop improvement programs seeking to breed for drought tolerance. Stress memory in this group could enhance these species' physiological response to drought, though no studies have yet been conducted in this area. In this pot experiment, drought tolerance, determined using secondary traits, was tested in 59 sweetpotato crop wild relative accessions using potential short-term memory induction. For this purpose, accessions were subjected to two treatments, i) non-priming: full irrigation (up to field capacity, 0.32 w/w) from transplanting to harvest and ii) priming: full irrigation from transplanting to flowering onset (FO) followed by a priming process from FO to harvest. The priming process consisted of three water restriction periods of increasing length (8, 11, and 14 days) followed each by a recovery period of 14 days with full irrigation. Potential stress memory induction was calculated for each accession based on ecophysiological indicators such as senescence, foliar area, leaf-minus-air temperature, and leaf 13C discrimination. Based on total biomass production, resilience and production capacity were calculated per accession to evaluate drought tolerance. Increase in foliar area, efficient leaf thermoregulation, improvement of leaf photosynthetic performance, and delayed senescence were identified in 23.7, 28.8, 50.8, and 81.4% of the total number of accessions, respectively. It was observed that under a severe drought scenario, a resilient response included more long-lived green leaf area while a productive response was related to optimized leaf thermoregulation and gas exchange. Our preliminary results suggest that I. triloba and I. trifida have the potential to improve sweetpotato resilience in dry environments and should be included in introgression breeding programs of this crop. Furthermore, I. splendor-sylvae, I. ramosissima, I. tiliacea, and wild I. batatas were the most productive species studied but given the genetic barriers to interspecific hybridization between these species and sweetpotato, we suggest that further genetic and metabolic studies be conducted on them. Finally, this study proposes a promising method for improving drought tolerance based on potential stress-memory induction, which is applicable both for wild species and crops.

8.
Hortic Res ; 6: 2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30603089

RESUMO

Sweet potato (Ipomoea batatas, Lam.) is an important root vegetable in developing countries. After its domestication in Neotropical America, human migration led to the distribution of the sweet potato plant throughout the world. Both leaf and storage root are high in compounds of nutritional value. Yet, the storage roots are of particular value due to their significant content of provitamin A (ß-carotene). The breeding effort for elite sweet potato lines led to the reduction of genetic diversity and the potential to improve other traits. The focus of the present study was to assess the metabolic diversity of 27 sweet potato cultivars including landraces and improved varieties. A metabolite profiling approach was optimised for sweet potato leaf and storage root tissue and 130 metabolites identified with three different analysis platforms. The data highlighted a lack of correlation between storage root phenotype and leaf metabolism. Furthermore, the metabolic diversity of storage roots was based on the secondary metabolism, including phenylpropanoids and carotenoids. Three cultivars of three different flesh colouration (yellow, orange and purple) showed a significant difference of the primary metabolism. This data demonstrates the value of metabolite profiling to breeding programs as a means of identifying differences in phenotypes/chemotypes and characterising parental material for future pre-breeding resources.

9.
Evol Appl ; 10(5): 498-513, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28515782

RESUMO

Understanding the distribution of crop genetic diversity in relation to environmental factors can give insights into the eco-evolutionary processes involved in plant domestication. Yam beans (Pachyrhizus Rich. ex DC.) are leguminous crops native to South and Central America that are grown for their tuberous roots but are seed-propagated. Using a landscape genetic approach, we examined correlations between environmental factors and phylogeographic patterns of genetic diversity in Pachyrhizus landrace populations. Molecular analyses based on chloroplast DNA sequencing and a new set of nuclear microsatellite markers revealed two distinct lineages, with strong genetic differentiation between Andean landraces (lineage A) and Amazonian landraces (lineage B). The comparison of different evolutionary scenarios for the diversification history of yam beans in the Andes using approximate Bayesian computation suggests that Pachyrhizus ahipa and Pachyrhizus tuberosus share a progenitor-derivative relationship, with environmental factors playing an important role in driving selection for divergent ecotypes. The new molecular data call for a revision of the taxonomy of Pachyrhizus but are congruent with paleoclimatic and archeological evidence, and suggest that selection for determinate growth was part of ecophysiological adaptations associated with the diversification of the P. tuberosus-P. ahipa complex during the Mid-Holocene.

10.
PLoS One ; 10(4): e0122599, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25923711

RESUMO

Crop wild relatives have a long history of use in potato breeding, particularly for pest and disease resistance, and are expected to be increasingly used in the search for tolerance to biotic and abiotic stresses. Their current and future use in crop improvement depends on their availability in ex situ germplasm collections. As these plants are impacted in the wild by habitat destruction and climate change, actions to ensure their conservation ex situ become ever more urgent. We analyzed the state of ex situ conservation of 73 of the closest wild relatives of potato (Solanum section Petota) with the aim of establishing priorities for further collecting to fill important gaps in germplasm collections. A total of 32 species (43.8%), were assigned high priority for further collecting due to severe gaps in their ex situ collections. Such gaps are most pronounced in the geographic center of diversity of the wild relatives in Peru. A total of 20 and 18 species were assessed as medium and low priority for further collecting, respectively, with only three species determined to be sufficiently represented currently. Priorities for further collecting include: (i) species completely lacking representation in germplasm collections; (ii) other high priority taxa, with geographic emphasis on the center of species diversity; (iii) medium priority species. Such collecting efforts combined with further emphasis on improving ex situ conservation technologies and methods, performing genotypic and phenotypic characterization of wild relative diversity, monitoring wild populations in situ, and making conserved wild relatives and their associated data accessible to the global research community, represent key steps in ensuring the long-term availability of the wild genetic resources of this important crop.


Assuntos
Produtos Agrícolas/fisiologia , Melhoramento Vegetal , Banco de Sementes , Solanum/fisiologia , Mudança Climática , Conservação dos Recursos Naturais , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Resistência à Doença , Ecossistema , Genótipo , Peru , Solanum/genética , Solanum/imunologia
11.
Front Plant Sci ; 6: 251, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25954286

RESUMO

Crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas] have the potential to contribute to breeding objectives for this important root crop. Uncertainty in regard to species boundaries and their phylogenetic relationships, the limited availability of germplasm with which to perform crosses, and the difficulty of introgression of genes from wild species has constrained their utilization. Here, we compile geographic occurrence data on relevant sweetpotato wild relatives and produce potential distribution models for the species. We then assess the comprehensiveness of ex situ germplasm collections, contextualize these results with research and breeding priorities, and use ecogeographic information to identify species with the potential to contribute desirable agronomic traits. The fourteen species that are considered the closest wild relatives of sweetpotato generally occur from the central United States to Argentina, with richness concentrated in Mesoamerica and in the extreme Southeastern United States. Currently designated species differ among themselves and in comparison to the crop in their adaptations to temperature, precipitation, and edaphic characteristics and most species also show considerable intraspecific variation. With 79% of species identified as high priority for further collecting, we find that these crop genetic resources are highly under-represented in ex situ conservation systems and thus their availability to breeders and researchers is inadequate. We prioritize taxa and specific geographic locations for further collecting in order to improve the completeness of germplasm collections. In concert with enhanced conservation of sweetpotato wild relatives, further taxonomic research, characterization and evaluation of germplasm, and improving the techniques to overcome barriers to introgression with wild species are needed in order to mobilize these genetic resources for crop breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA