Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Bioinformatics ; 35(7): 1188-1196, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169736

RESUMO

MOTIVATION: Due to the complexity and heterogeneity of multicellular biological systems, mathematical models that take into account cell signalling, cell population behaviour and the extracellular environment are particularly helpful. We present PhysiBoSS, an open source software which combines intracellular signalling using Boolean modelling (MaBoSS) and multicellular behaviour using agent-based modelling (PhysiCell). RESULTS: PhysiBoSS provides a flexible and computationally efficient framework to explore the effect of environmental and genetic alterations of individual cells at the population level, bridging the critical gap from single-cell genotype to single-cell phenotype and emergent multicellular behaviour. PhysiBoSS thus becomes very useful when studying heterogeneous population response to treatment, mutation effects, different modes of invasion or isomorphic morphogenesis events. To concretely illustrate a potential use of PhysiBoSS, we studied heterogeneous cell fate decisions in response to TNF treatment. We explored the effect of different treatments and the behaviour of several resistant mutants. We highlighted the importance of spatial information on the population dynamics by considering the effect of competition for resources like oxygen. AVAILABILITY AND IMPLEMENTATION: PhysiBoSS is freely available on GitHub (https://github.com/sysbio-curie/PhysiBoSS), with a Docker image (https://hub.docker.com/r/gletort/physiboss/). It is distributed as open source under the BSD 3-clause license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Modelos Genéticos , Transdução de Sinais , Software , Genótipo , Humanos , Transdução de Sinais/genética , Análise de Sistemas
2.
PLoS Comput Biol ; 14(2): e1005991, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29474446

RESUMO

Many multicellular systems problems can only be understood by studying how cells move, grow, divide, interact, and die. Tissue-scale dynamics emerge from systems of many interacting cells as they respond to and influence their microenvironment. The ideal "virtual laboratory" for such multicellular systems simulates both the biochemical microenvironment (the "stage") and many mechanically and biochemically interacting cells (the "players" upon the stage). PhysiCell-physics-based multicellular simulator-is an open source agent-based simulator that provides both the stage and the players for studying many interacting cells in dynamic tissue microenvironments. It builds upon a multi-substrate biotransport solver to link cell phenotype to multiple diffusing substrates and signaling factors. It includes biologically-driven sub-models for cell cycling, apoptosis, necrosis, solid and fluid volume changes, mechanics, and motility "out of the box." The C++ code has minimal dependencies, making it simple to maintain and deploy across platforms. PhysiCell has been parallelized with OpenMP, and its performance scales linearly with the number of cells. Simulations up to 105-106 cells are feasible on quad-core desktop workstations; larger simulations are attainable on single HPC compute nodes. We demonstrate PhysiCell by simulating the impact of necrotic core biomechanics, 3-D geometry, and stochasticity on the dynamics of hanging drop tumor spheroids and ductal carcinoma in situ (DCIS) of the breast. We demonstrate stochastic motility, chemical and contact-based interaction of multiple cell types, and the extensibility of PhysiCell with examples in synthetic multicellular systems (a "cellular cargo delivery" system, with application to anti-cancer treatments), cancer heterogeneity, and cancer immunology. PhysiCell is a powerful multicellular systems simulator that will be continually improved with new capabilities and performance improvements. It also represents a significant independent code base for replicating results from other simulation platforms. The PhysiCell source code, examples, documentation, and support are available under the BSD license at http://PhysiCell.MathCancer.org and http://PhysiCell.sf.net.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Biologia de Sistemas , Apoptose , Transporte Biológico , Fenômenos Biomecânicos , Neoplasias da Mama/metabolismo , Carcinoma Intraductal não Infiltrante/metabolismo , Comunicação Celular , Ciclo Celular , Feminino , Humanos , Sistema Imunitário , Modelos Biológicos , Necrose , Fenótipo , Reprodutibilidade dos Testes , Transdução de Sinais , Software , Esferoides Celulares , Processos Estocásticos
3.
BMC Bioinformatics ; 19(Suppl 18): 483, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30577742

RESUMO

BACKGROUND: Cancer is a complex, multiscale dynamical system, with interactions between tumor cells and non-cancerous host systems. Therapies act on this combined cancer-host system, sometimes with unexpected results. Systematic investigation of mechanistic computational models can augment traditional laboratory and clinical studies, helping identify the factors driving a treatment's success or failure. However, given the uncertainties regarding the underlying biology, these multiscale computational models can take many potential forms, in addition to encompassing high-dimensional parameter spaces. Therefore, the exploration of these models is computationally challenging. We propose that integrating two existing technologies-one to aid the construction of multiscale agent-based models, the other developed to enhance model exploration and optimization-can provide a computational means for high-throughput hypothesis testing, and eventually, optimization. RESULTS: In this paper, we introduce a high throughput computing (HTC) framework that integrates a mechanistic 3-D multicellular simulator (PhysiCell) with an extreme-scale model exploration platform (EMEWS) to investigate high-dimensional parameter spaces. We show early results in applying PhysiCell-EMEWS to 3-D cancer immunotherapy and show insights on therapeutic failure. We describe a generalized PhysiCell-EMEWS workflow for high-throughput cancer hypothesis testing, where hundreds or thousands of mechanistic simulations are compared against data-driven error metrics to perform hypothesis optimization. CONCLUSIONS: While key notational and computational challenges remain, mechanistic agent-based models and high-throughput model exploration environments can be combined to systematically and rapidly explore key problems in cancer. These high-throughput computational experiments can improve our understanding of the underlying biology, drive future experiments, and ultimately inform clinical practice.


Assuntos
Neoplasias/diagnóstico , Humanos , Modelos Teóricos , Fluxo de Trabalho
4.
Bioinformatics ; 30(16): 2367-74, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24755304

RESUMO

MOTIVATION: Currently, there are no ontologies capable of describing both the spatial organization of groups of cells and the behaviors of those cells. The lack of a formalized method for describing the spatiality and intrinsic biological behaviors of cells makes it difficult to adequately describe cells, tissues and organs as spatial objects in living tissues, in vitro assays and in computational models of tissues. RESULTS: We have developed an OWL-2 ontology to describe the intrinsic physical and biological characteristics of cells and tissues. The Cell Behavior Ontology (CBO) provides a basis for describing the spatial and observable behaviors of cells and extracellular components suitable for describing in vivo, in vitro and in silico multicell systems. Using the CBO, a modeler can create a meta-model of a simulation of a biological model and link that meta-model to experiment or simulation results. Annotation of a multicell model and its computational representation, using the CBO, makes the statement of the underlying biology explicit. The formal representation of such biological abstraction facilitates the validation, falsification, discovery, sharing and reuse of both models and experimental data. AVAILABILITY AND IMPLEMENTATION: The CBO, developed using Protégé 4, is available at http://cbo.biocomplexity.indiana.edu/cbo/ and at BioPortal (http://bioportal.bioontology.org/ontologies/CBO).


Assuntos
Ontologias Biológicas , Fenômenos Fisiológicos Celulares , Modelos Biológicos , Simulação por Computador
5.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645004

RESUMO

Interactions between biological systems and nanomaterials have become an important area of study due to the application of nanomaterials in medicine. In particular, the application of nanomaterials for cancer diagnosis or treatment presents a challenging opportunity due to the complex biology of this disease spanning multiple time and spatial scales. A system-level analysis would benefit from mathematical modeling and computational simulation to explore the interactions between anticancer drug-loaded nanoparticles (NPs), cells, and tissues, and the associated parameters driving this system and a patient's overall response. Although a number of models have explored these interactions in the past, few have focused on simulating individual cell-NP interactions. This study develops a multicellular agent-based model of cancer nanotherapy that simulates NP internalization, drug release within the cell cytoplasm, "inheritance" of NPs by daughter cells at cell division, cell pharmacodynamic response to the intracellular drug, and overall drug effect on tumor dynamics. A large-scale parallel computational framework is used to investigate the impact of pharmacokinetic design parameters (NP internalization rate, NP decay rate, anticancer drug release rate) and therapeutic strategies (NP doses and injection frequency) on the tumor dynamics. In particular, through the exploration of NP "inheritance" at cell division, the results indicate that cancer treatment may be improved when NPs are inherited at cell division for cytotoxic chemotherapy. Moreover, smaller dosage of cytostatic chemotherapy may also improve inhibition of tumor growth when cell division is not completely inhibited. This work suggests that slow delivery by "heritable" NPs can drive new dimensions of nanotherapy design for more sustained therapeutic response.

6.
GigaByte ; 2024: gigabyte128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948511

RESUMO

Defining a multicellular model can be challenging. There may be hundreds of parameters that specify the attributes and behaviors of objects. In the best case, the model will be defined using some format specification - a markup language - that will provide easy model sharing (and a minimal step toward reproducibility). PhysiCell is an open-source, physics-based multicellular simulation framework with an active and growing user community. It uses XML to define a model and, traditionally, users needed to manually edit the XML to modify the model. PhysiCell Studio is a tool to make this task easier. It provides a GUI that allows editing the XML model definition, including the creation and deletion of fundamental objects: cell types and substrates in the microenvironment. It also lets users build their model by defining initial conditions and biological rules, run simulations, and view results interactively. PhysiCell Studio has evolved over multiple workshops and academic courses in recent years, which has led to many improvements. There is both a desktop and cloud version. Its design and development has benefited from an active undergraduate and graduate research program. Like PhysiCell, the Studio is open-source software and contributions from the community are encouraged.

7.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37961612

RESUMO

Defining a multicellular model can be challenging. There may be hundreds of parameters that specify the attributes and behaviors of objects. Hopefully the model will be defined using some format specification, e.g., a markup language, that will provide easy model sharing (and a minimal step toward reproducibility). PhysiCell is an open source, physics-based multicellular simulation framework with an active and growing user community. It uses XML to define a model and, traditionally, users needed to manually edit the XML to modify the model. PhysiCell Studio is a tool to make this task easier. It provides a graphical user interface that allows editing the XML model definition, including the creation and deletion of fundamental objects, e.g., cell types and substrates in the microenvironment. It also lets users build their model by defining initial conditions and biological rules, run simulations, and view results interactively. PhysiCell Studio has evolved over multiple workshops and academic courses in recent years which has led to many improvements. Its design and development has benefited from an active undergraduate and graduate research program. Like PhysiCell, the Studio is open source software and contributions from the community are encouraged.

8.
bioRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37745323

RESUMO

Cells are fundamental units of life, constantly interacting and evolving as dynamical systems. While recent spatial multi-omics can quantitate individual cells' characteristics and regulatory programs, forecasting their evolution ultimately requires mathematical modeling. We develop a conceptual framework-a cell behavior hypothesis grammar-that uses natural language statements (cell rules) to create mathematical models. This allows us to systematically integrate biological knowledge and multi-omics data to make them computable. We can then perform virtual "thought experiments" that challenge and extend our understanding of multicellular systems, and ultimately generate new testable hypotheses. In this paper, we motivate and describe the grammar, provide a reference implementation, and demonstrate its potential through a series of examples in tumor biology and immunotherapy. Altogether, this approach provides a bridge between biological, clinical, and systems biology researchers for mathematical modeling of biological systems at scale, allowing the community to extrapolate from single-cell characterization to emergent multicellular behavior.

9.
PRIMUS (Terre Ht) ; 32(3 Pt 2): 446-467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197716

RESUMO

There is growing awareness of the need for mathematics and computing to quantitatively understand the complex dynamics and feedbacks in the life sciences. Although several institutions and research groups are conducting pioneering multidisciplinary research, communication and education across fields remain a bottleneck. The opportunity is ripe for using education research-supported mechanisms of cross-disciplinary training at the intersection of mathematics, computation, and biology. This case study uses the computational apprenticeship theoretical framework to describe the efforts of a computational biology lab to rapidly prototype, test, and refine a mentorship infrastructure for undergraduate research experiences. We describe the challenges, benefits, and lessons learned, as well as the utility of the computational apprenticeship framework in supporting computational/math students learning and contributing to biology, and biologists in learning computational methods. We also explore implications for undergraduate classroom instruction and cross-disciplinary scientific communication.

10.
bioRxiv ; 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32511322

RESUMO

The 2019 novel coronavirus, SARS-CoV-2, is a pathogen of critical significance to international public health. Knowledge of the interplay between molecular-scale virus-receptor interactions, single-cell viral replication, intracellular-scale viral transport, and emergent tissue-scale viral propagation is limited. Moreover, little is known about immune system-virus-tissue interactions and how these can result in low-level (asymptomatic) infections in some cases and acute respiratory distress syndrome (ARDS) in others, particularly with respect to presentation in different age groups or pre-existing inflammatory risk factors. Given the nonlinear interactions within and among each of these processes, multiscale simulation models can shed light on the emergent dynamics that lead to divergent outcomes, identify actionable "choke points" for pharmacologic interventions, screen potential therapies, and identify potential biomarkers that differentiate patient outcomes. Given the complexity of the problem and the acute need for an actionable model to guide therapy discovery and optimization, we introduce and iteratively refine a prototype of a multiscale model of SARS-CoV-2 dynamics in lung tissue. The first prototype model was built and shared internationally as open source code and an online interactive model in under 12 hours, and community domain expertise is driving regular refinements. In a sustained community effort, this consortium is integrating data and expertise across virology, immunology, mathematical biology, quantitative systems physiology, cloud and high performance computing, and other domains to accelerate our response to this critical threat to international health. More broadly, this effort is creating a reusable, modular framework for studying viral replication and immune response in tissues, which can also potentially be adapted to related problems in immunology and immunotherapy.

11.
Nucleic Acids Res ; 36(Database issue): D815-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17827212

RESUMO

Understanding how genetic variation affects the molecular function of gene products is an emergent area of bioinformatic research. Here, we present updates to MutDB (http://www.mutdb.org), a tool aiming to aid bioinformatic studies by integrating publicly available databases of human genetic variation with molecular features and clinical phenotype data. MutDB, first developed in 2002, integrates annotated SNPs in dbSNP and amino acid substitutions in Swiss-Prot with protein structural information, links to scores that predict functional disruption and other useful annotations. Though these functional annotations are mainly focused on nonsynonymous SNPs, some information on other SNP types included in dbSNP is also provided. Additionally, we have developed a new functionality that facilitates KEGG pathway visualization of genes containing SNPs and a SNP query tool for visualizing and exporting sets of SNPs that share selected features based on certain filters.


Assuntos
Substituição de Aminoácidos , Bases de Dados Genéticas , Polimorfismo de Nucleotídeo Único , Doenças Genéticas Inatas/genética , Humanos , Internet , Mutação , Proteínas/química , Proteínas/genética , Software , Interface Usuário-Computador
12.
Methods Mol Biol ; 500: 361-428, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19399437

RESUMO

Mathematical modeling and computer simulation have become crucial to biological fields from genomics to ecology. However, multicell, tissue-level simulations of development and disease have lagged behind other areas because they are mathematically more complex and lack easy-to-use software tools that allow building and running in silico experiments without requiring in-depth knowledge of programming. This tutorial introduces Glazier-Graner-Hogeweg (GGH) multicell simulations and CompuCell3D, a simulation framework that allows users to build, test, and run GGH simulations.


Assuntos
Simulação por Computador , Biologia do Desenvolvimento , Doença , Algoritmos , Animais , Humanos , Imageamento Tridimensional , Matemática , Modelos Teóricos , Linguagens de Programação , Software
13.
Mol Syst Des Eng ; 4(4): 747-760, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31497314

RESUMO

We present an integrated framework for enabling dynamic exploration of design spaces for cancer immunotherapies with detailed dynamical simulation models on high-performance computing resources. Our framework combines PhysiCell, an open source agent-based simulation platform for cancer and other multicellular systems, and EMEWS, an open source platform for extreme-scale model exploration. We build an agent-based model of immunosurveillance against heterogeneous tumours, which includes spatial dynamics of stochastic tumour-immune contact interactions. We implement active learning and genetic algorithms using high-performance computing workflows to adaptively sample the model parameter space and iteratively discover optimal cancer regression regions within biological and clinical constraints.

14.
JCO Clin Cancer Inform ; 3: 1-13, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30715927

RESUMO

Cancer biology involves complex, dynamic interactions between cancer cells and their tissue microenvironments. Single-cell effects are critical drivers of clinical progression. Chemical and mechanical communication between tumor and stromal cells can co-opt normal physiologic processes to promote growth and invasion. Cancer cell heterogeneity increases cancer's ability to test strategies to adapt to microenvironmental stresses. Hypoxia and treatment can select for cancer stem cells and drive invasion and resistance. Cell-based computational models (also known as discrete models, agent-based models, or individual-based models) simulate individual cells as they interact in virtual tissues, which allows us to explore how single-cell behaviors lead to the dynamics we observe and work to control in cancer systems. In this review, we introduce the broad range of techniques available for cell-based computational modeling. The approaches can range from highly detailed models of just a few cells and their morphologies to millions of simpler cells in three-dimensional tissues. Modeling individual cells allows us to directly translate biologic observations into simulation rules. In many cases, individual cell agents include molecular-scale models. Most models also simulate the transport of oxygen, drugs, and growth factors, which allow us to link cancer development to microenvironmental conditions. We illustrate these methods with examples drawn from cancer hypoxia, angiogenesis, invasion, stem cells, and immunosurveillance. An ecosystem of interoperable cell-based simulation tools is emerging at a time when cloud computing resources make software easier to access and supercomputing resources make large-scale simulation studies possible. As the field develops, we anticipate that high-throughput simulation studies will allow us to rapidly explore the space of biologic possibilities, prescreen new therapeutic strategies, and even re-engineer tumor and stromal cells to bring cancer systems under control.


Assuntos
Modelos Biológicos , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Biologia de Sistemas/métodos , Animais , Biologia Celular , Hipóxia Celular , Simulação por Computador , Transição Epitelial-Mesenquimal , Humanos , Invasividade Neoplásica , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral
15.
Artigo em Inglês | MEDLINE | ID: mdl-31342010

RESUMO

Jupyter Notebooks (Kluyver et al., 2016, Perkel (2018)) provide executable documents (in a variety of programming languages) that can be run in a web browser. When a notebook contains graphical widgets, it becomes an easy-to-use graphical user interface (GUI). Many scientific simulation packages use text-based configuration files to provide parameter values and run at the command line without a graphical interface. Manually editing these files to explore how different values affect a simulation can be burdensome for technical users, and impossible to use for those with other scientific backgrounds. xml2jupyter is a Python package that addresses these scientific bottlenecks. It provides a mapping between configuration files, formatted in the Extensible Markup Language (XML), and Jupyter widgets. Widgets are automatically generated from the XML file and these can, optionally, be incorporated into a larger GUI for a simulation package, and optionally hosted on cloud resources. Users modify parameter values via the widgets, and the values are written to the XML configuration file which is input to the simulation's command-line interface. xml2jupyter has been tested using PhysiCell (Ghaffarizadeh, Heiland, Friedman, Mumenthaler, & Macklin, 2018), an open source, agent-based simulator for biology, and it is being used by students for classroom and research projects. In addition, we use xml2jupyter to help create Jupyter GUIs for PhysiCell-related applications running on nanoHUB (Madhavan et al., 2013).

16.
Nucleic Acids Res ; 33(Web Server issue): W311-4, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15980479

RESUMO

Non-synonymous single nucleotide polymorphisms (SNPs) and mutations have been associated with human phenotypes and disease. As more and more SNPs are mapped to phenotypes, understanding how these variations affect the function and expression of genes and gene products becomes an important endeavor. We have developed a set of tools to aid in the understanding of how amino acid substitutions affect protein structures. To do this, we have annotated SNPs in dbSNP and amino acid substitutions in Swiss-Prot with protein structural information, if available. We then developed a novel web interface to this data that allows for visualization of the location of these substitutions. We have also developed a web service interface to the dataset and developed interactive plugins for UCSF's Chimera structural modeling tool and PyMOL that integrate our annotations with these sophisticated structural visualization and modeling tools. The web services portal and plugins can be downloaded from http://www.lifescienceweb.org/ and the web interface is at http://www.mutdb.org/.


Assuntos
Substituição de Aminoácidos , Modelos Moleculares , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Software , Gráficos por Computador , Internet , Proteínas/genética , Interface Usuário-Computador
17.
BMC Struct Biol ; 6: 4, 2006 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-16526955

RESUMO

BACKGROUND: Understanding protein function from its structure is a challenging problem. Sequence based approaches for finding homology have broad use for annotation of both structure and function. 3D structural information of protein domains and their interactions provide a complementary view to structure function relationships to sequence information. We have developed a web site http://www.sblest.org/ and an API of web services that enables users to submit protein structures and identify statistically significant neighbors and the underlying structural environments that make that match using a suite of sequence and structure analysis tools. To do this, we have integrated S-BLEST, PSI-BLAST and HMMer based superfamily predictions to give a unique integrated view to prediction of SCOP superfamilies, EC number, and GO term, as well as identification of the protein structural environments that are associated with that prediction. Additionally, we have extended UCSF Chimera and PyMOL to support our web services, so that users can characterize their own proteins of interest. RESULTS: Users are able to submit their own queries or use a structure already in the PDB. Currently the databases that a user can query include the popular structural datasets ASTRAL 40 v1.69, ASTRAL 95 v1.69, CLUSTER50, CLUSTER70 and CLUSTER90 and PDBSELECT25. The results can be downloaded directly from the site and include function prediction, analysis of the most conserved environments and automated annotation of query proteins. These results reflect both the hits found with PSI-BLAST, HMMer and with S-BLEST. We have evaluated how well annotation transfer can be performed on SCOP ID's, Gene Ontology (GO) ID's and EC Numbers. The method is very efficient and totally automated, generally taking around fifteen minutes for a 400 residue protein. CONCLUSION: With structural genomics initiatives determining structures with little, if any, functional characterization, development of protein structure and function analysis tools are a necessary endeavor. We have developed a useful application towards a solution to this problem using common structural and sequence based analysis tools. These approaches are able to find statistically significant environments in a database of protein structure, and the method is able to quantify how closely associated each environment is to a predicted functional annotation.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Homologia Estrutural de Proteína , Bases de Dados de Proteínas , Internet , Estrutura Molecular , Software , Interface Usuário-Computador
18.
Chaos ; 4(2): 421-424, 1994 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12780117

RESUMO

We announce the availability of a software package, called kltool, that can extract phase space information from complex spatiotemporal data via the Karhunen-Loeve analysis. Data generated by the periodic, quasiperiodic or chaotic evolution of a small number of spatially coherent structures can be processed. A key feature of kltool is that it allows the user to interact easily with the data processing and its graphical display. We illustrate the use of kltool on numerical data from the Kuramoto-Sivashinsky equation and laboratory data from a flame experiment.

19.
PLoS One ; 6(11): e27431, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22102894

RESUMO

Transfer entropy (TE) is an information-theoretic measure which has received recent attention in neuroscience for its potential to identify effective connectivity between neurons. Calculating TE for large ensembles of spiking neurons is computationally intensive, and has caused most investigators to probe neural interactions at only a single time delay and at a message length of only a single time bin. This is problematic, as synaptic delays between cortical neurons, for example, range from one to tens of milliseconds. In addition, neurons produce bursts of spikes spanning multiple time bins. To address these issues, here we introduce a free software package that allows TE to be measured at multiple delays and message lengths. To assess performance, we applied these extensions of TE to a spiking cortical network model (Izhikevich, 2006) with known connectivity and a range of synaptic delays. For comparison, we also investigated single-delay TE, at a message length of one bin (D1TE), and cross-correlation (CC) methods. We found that D1TE could identify 36% of true connections when evaluated at a false positive rate of 1%. For extended versions of TE, this dramatically improved to 73% of true connections. In addition, the connections correctly identified by extended versions of TE accounted for 85% of the total synaptic weight in the network. Cross correlation methods generally performed more poorly than extended TE, but were useful when data length was short. A computational performance analysis demonstrated that the algorithm for extended TE, when used on currently available desktop computers, could extract effective connectivity from 1 hr recordings containing 200 neurons in ∼5 min. We conclude that extending TE to multiple delays and message lengths improves its ability to assess effective connectivity between spiking neurons. These extensions to TE soon could become practical tools for experimentalists who record hundreds of spiking neurons.


Assuntos
Entropia , Modelos Neurológicos , Rede Nervosa/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia , Sinapses/fisiologia , Potenciais de Ação , Algoritmos , Simulação por Computador , Humanos
20.
Acc Chem Res ; 40(10): 953-60, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17713964

RESUMO

The emergence of nonlinear optical (NLO) measurement approaches has provided new windows into molecular and macromolecular structure within thin films and materials. The greatest barriers in mining this structural information increasingly appear in meaningfully relating these macroscopic results back to molecular-level descriptions, driven largely by the increasing complexity of the molecular systems and interfacial architectures under interrogation. As NLO methods continue their expansion into increasingly diverse disciplines, so grows the need for tools to guide this evolution without sacrificing the mathematical rigor of more traditional tensor representations. Recent developments reviewed in this Account are designed to facilitate interpretation of complex assemblies using relatively simple but still quantitatively accurate visual representations of the polarization-dependent optical nonlinearity, both for individual chromophores and for polymeric assemblies of coupled chromophores. Although the primary focus of this Account is on second-order nonlinear optical effects, including second harmonic generation and sum frequency generation, many of these same concepts also directly apply to higher-order phenomena.


Assuntos
Dinâmica não Linear , Óptica e Fotônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA