Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Microbiol ; 23(9): e13341, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33830607

RESUMO

The inner membrane complex (IMC) is a defining feature of apicomplexan parasites, which confers stability and shape to the cell, functions as a scaffolding compartment during the formation of daughter cells and plays an important role in motility and invasion during different life cycle stages of these single-celled organisms. To explore the IMC proteome of the malaria parasite Plasmodium falciparum we applied a proximity-dependent biotin identification (BioID)-based proteomics approach, using the established IMC marker protein Photosensitized INA-Labelled protein 1 (PhIL1) as bait in asexual blood-stage parasites. Subsequent mass spectrometry-based peptide identification revealed enrichment of 12 known IMC proteins and several uncharacterized candidate proteins. We validated nine of these previously uncharacterized proteins by endogenous GFP-tagging. Six of these represent new IMC proteins, while three proteins have a distinct apical localization that most likely represents structures described as apical annuli in Toxoplasma gondii. Additionally, various Kelch13 interacting candidates were identified, suggesting an association of the Kelch13 compartment and the IMC in schizont and merozoite stages. This work extends the number of validated IMC proteins in the malaria parasite and reveals for the first time the existence of apical annuli proteins in P. falciparum. Additionally, it provides evidence for a spatial association between the Kelch13 compartment and the IMC in late blood-stage parasites.


Assuntos
Malária Falciparum , Parasitos , Animais , Merozoítos , Plasmodium falciparum , Proteínas de Protozoários
2.
J Cell Sci ; 129(4): 673-80, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26763910

RESUMO

The intraerythrocytic developmental cycle of Plasmodium falciparum is completed with the release of up to 32 invasive daughter cells, the merozoites, into the blood stream. Before release, the final step of merozoite development is the assembly of the cortical pellicle, a multi-layered membrane structure. This unique apicomplexan feature includes the inner membrane complex (IMC) and the parasite's plasma membrane. A dynamic ring structure, referred to as the basal complex, is part of the IMC and helps to divide organelles and abscises in the maturing daughter cells. Here, we analyze the dynamics of the basal complex of P. falciparum. We report on a novel transmembrane protein of the basal complex termed BTP1, which is specific to the genus Plasmodium. It colocalizes with the known basal complex marker protein MORN1 and shows distinct dynamics as well as localization when compared to other IMC proteins during schizogony. Using a parasite plasma membrane marker cell line, we correlate dynamics of the basal complex with the acquisition of the maternal membrane. We show that plasma membrane invagination and IMC propagation are interlinked during the final steps of cell division.


Assuntos
Plasmodium falciparum/ultraestrutura , Esquizontes/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Células Cultivadas , Humanos , Proteínas de Membrana/metabolismo , Plasmodium falciparum/fisiologia , Transporte Proteico , Proteínas de Protozoários/metabolismo , Esquizontes/fisiologia
3.
J Biol Chem ; 290(3): 1712-28, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25425642

RESUMO

To survive and persist within its human host, the malaria parasite Plasmodium falciparum utilizes a battery of lineage-specific innovations to invade and multiply in human erythrocytes. With central roles in invasion and cytokinesis, the inner membrane complex, a Golgi-derived double membrane structure underlying the plasma membrane of the parasite, represents a unique and unifying structure characteristic to all organisms belonging to a large phylogenetic group called Alveolata. More than 30 structurally and phylogenetically distinct proteins are embedded in the IMC, where a portion of these proteins displays N-terminal acylation motifs. Although N-terminal myristoylation is catalyzed co-translationally within the cytoplasm of the parasite, palmitoylation takes place at membranes and is mediated by palmitoyl acyltransferases (PATs). Here, we identify a PAT (PfDHHC1) that is exclusively localized to the IMC. Systematic phylogenetic analysis of the alveolate PAT family reveals PfDHHC1 to be a member of a highly conserved, apicomplexan-specific clade of PATs. We show that during schizogony this enzyme has an identical distribution like two dual-acylated, IMC-localized proteins (PfISP1 and PfISP3). We used these proteins to probe into specific sequence requirements for IMC-specific membrane recruitment and their interaction with differentially localized PATs of the parasite.


Assuntos
Aciltransferases/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Actinas/química , Biotina/química , Catálise , Análise Mutacional de DNA , Proteínas de Fluorescência Verde/metabolismo , Humanos , Malária/parasitologia , Filogenia , Estrutura Terciária de Proteína , Transporte Proteico
4.
Biochem J ; 452(3): 457-66, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23544851

RESUMO

Red blood cell invasion by the malaria parasite Plasmodium falciparum relies on a complex protein network that uses low and high affinity receptor-ligand interactions. Signal transduction through the action of specific kinases is a control mechanism for the orchestration of this process. In the present study we report on the phosphorylation of the CPD (cytoplasmic domain) of P. falciparum Rh2b (reticulocyte homologue protein 2b). First, we identified Ser3233 as the sole phospho-acceptor site in the CPD for in vitro phosphorylation by parasite extract. We provide several lines of evidence that this phosphorylation is mediated by PfCK2 (P. falciparum casein kinase 2): phosphorylation is cAMP independent, utilizes ATP as well as GTP as phosphate donors, is inhibited by heparin and tetrabromocinnamic acid, and is mediated by purified PfCK2. We raised a phospho-specific antibody and showed that Ser3233 phosphorylation occurs in the parasite prior to host cell egress. We analysed the spatiotemporal aspects of this phosphorylation using immunoprecipitated endogenous Rh2b and minigenes expressing the CPD either at the plasma or rhoptry membrane. Phosphorylation of Rh2b is not spatially restricted to either the plasma or rhoptry membrane and most probably occurs before Rh2b is translocated from the rhoptry neck to the plasma membrane.


Assuntos
Eritrócitos/metabolismo , Eritrócitos/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/parasitologia , Células Cultivadas , Eritrócitos/química , Humanos , Ligantes , Mutação/genética , Fosforilação/genética , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/sangue , Proteínas de Protozoários/genética
5.
Front Cell Infect Microbiol ; 10: 611801, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33489940

RESUMO

Apicomplexan parasites, such as human malaria parasites, have complex lifecycles encompassing multiple and diverse environmental niches. Invading, replicating, and escaping from different cell types, along with exploiting each intracellular niche, necessitate large and dynamic changes in parasite morphology and cellular architecture. The inner membrane complex (IMC) is a unique structural element that is intricately involved with these distinct morphological changes. The IMC is a double membrane organelle that forms de novo and is located beneath the plasma membrane of these single-celled organisms. In Plasmodium spp. parasites it has three major purposes: it confers stability and shape to the cell, functions as an important scaffolding compartment during the formation of daughter cells, and plays a major role in motility and invasion. Recent years have revealed greater insights into the architecture, protein composition and function of the IMC. Here, we discuss the multiple roles of the IMC in each parasite lifecycle stage as well as insights into its sub-compartmentalization, biogenesis, disassembly and regulation during stage conversion of P. falciparum.


Assuntos
Malária , Parasitos , Plasmodium , Animais , Membrana Celular , Humanos , Plasmodium falciparum , Proteínas de Protozoários
6.
J Mol Biol ; 432(4): 878-896, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31877322

RESUMO

Apicomplexan parasites contain rhoptries, which are specialized secretory organelles that coordinate host cell invasion. During the process of invasion, rhoptries secrete their contents to facilitate interaction with, and entry into, the host cell. Here, we report the crystal structure of the rhoptry protein Armadillo Repeats-Only (ARO) from the human malaria parasite, Plasmodium falciparum (PfARO). The structure of PfARO comprises five tandem Armadillo-like (ARM) repeats, with adjacent ARM repeats stacked in a head-to-tail orientation resulting in PfARO adopting an elongated curved shape. Interestingly, the concave face of PfARO contains two distinct patches of highly conserved residues that appear to play an important role in protein-protein interaction. We functionally characterized the P. falciparum homolog of ARO interacting protein (PfAIP) and demonstrate that it localizes to the rhoptries. We show that conditional mislocalization of PfAIP leads to deficient red blood cell invasion. Guided by the structure, we identified mutations of PfARO that lead to mislocalization of PfAIP. Using proximity-based biotinylation we probe into PfAIP interacting proteins.


Assuntos
Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Humanos , Malária/fisiopatologia , Dados de Sequência Molecular , Mutagênese/genética , Mutagênese/fisiologia , Mutação , Parasitemia/parasitologia , Filogenia , Plasmodium falciparum/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Proteínas de Protozoários/genética
7.
Sci Rep ; 6: 34479, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698395

RESUMO

Central to the pathogenesis of malaria is the proliferation of Plasmodium falciparum parasites within human erythrocytes. Parasites invade erythrocytes via a coordinated sequence of receptor-ligand interactions between the parasite and host cell. One key ligand, Apical Membrane Antigen 1 (AMA1), is a leading blood-stage vaccine and previous work indicates that phosphorylation of its cytoplasmic domain (CPD) is important to its function during invasion. Here we investigate the significance of each of the six available phospho-sites in the CPD. We confirm that the cyclic AMP/protein kinase A (PKA) signalling pathway elicits a phospho-priming step upon serine 610 (S610), which enables subsequent phosphorylation in vitro of a conserved, downstream threonine residue (T613) by glycogen synthase kinase 3 (GSK3). Both phosphorylation steps are required for AMA1 to function efficiently during invasion. This provides the first evidence that the functions of key invasion ligands of the malaria parasite are regulated by sequential phosphorylation steps.


Assuntos
Antígenos de Protozoários/metabolismo , Eritrócitos/parasitologia , Malária Falciparum/metabolismo , Proteínas de Membrana/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Sistemas do Segundo Mensageiro , Antígenos de Protozoários/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Eritrócitos/metabolismo , Humanos , Malária Falciparum/genética , Malária Falciparum/patologia , Proteínas de Membrana/genética , Fosforilação/genética , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Domínios Proteicos , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA