Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934485

RESUMO

Neurons are highly specialised cells that need to relay information over long distances and integrate signals from thousands of synaptic inputs. The complexity of neuronal function is evident in the morphology of their plasma membrane (PM), by far the most intricate of all cell types. Yet, within the neuron lies an organelle whose architecture adds another level to this morphological sophistication - the endoplasmic reticulum (ER). Neuronal ER is abundant in the cell body and extends to distant axonal terminals and postsynaptic dendritic spines. It also adopts specialised structures like the spine apparatus in the postsynapse and the cisternal organelle in the axon initial segment. At membrane contact sites (MCSs) between the ER and the PM, the two membranes come in close proximity to create hubs of lipid exchange and Ca2+ signalling called ER-PM junctions. The development of electron and light microscopy techniques extended our knowledge on the physiological relevance of ER-PM MCSs. Equally important was the identification of ER and PM partners that interact in these junctions, most notably the STIM-ORAI and VAP-Kv2.1 pairs. The physiological functions of ER-PM junctions in neurons are being increasingly explored, but their molecular composition and the role in the dynamics of Ca2+ signalling are less clear. This review aims to outline the current state of research on the topic of neuronal ER-PM contacts. Specifically, we will summarise the involvement of different classes of Ca2+ channels in these junctions, discuss their role in neuronal development and neuropathology and propose directions for further research.

2.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34244444

RESUMO

Synaptic vesicle (SV) release, recycling, and plastic changes of release probability co-occur side by side within nerve terminals and rely on local Ca2+ signals with different temporal and spatial profiles. The mechanisms that guarantee separate regulation of these vital presynaptic functions during action potential (AP)-triggered presynaptic Ca2+ entry remain unclear. Combining Drosophila genetics with electrophysiology and imaging reveals the localization of two different voltage-gated calcium channels at the presynaptic terminals of glutamatergic neuromuscular synapses (the Drosophila Cav2 homolog, Dmca1A or cacophony, and the Cav1 homolog, Dmca1D) but with spatial and functional separation. Cav2 within active zones is required for AP-triggered neurotransmitter release. By contrast, Cav1 localizes predominantly around active zones and contributes substantially to AP-evoked Ca2+ influx but has a small impact on release. Instead, L-type calcium currents through Cav1 fine-tune short-term plasticity and facilitate SV recycling. Separate control of SV exo- and endocytosis by AP-triggered presynaptic Ca2+ influx through different channels demands efficient measures to protect the neurotransmitter release machinery against Cav1-mediated Ca2+ influx. We show that the plasma membrane Ca2+ ATPase (PMCA) resides in between active zones and isolates Cav2-triggered release from Cav1-mediated dynamic regulation of recycling and short-term plasticity, two processes which Cav2 may also contribute to. As L-type Cav1 channels also localize next to PQ-type Cav2 channels within axon terminals of some central mammalian synapses, we propose that Cav2, Cav1, and PMCA act as a conserved functional triad that enables separate control of SV release and recycling rates in presynaptic terminals.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Endocitose , Exocitose , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Vesículas Sinápticas/metabolismo , Potenciais de Ação , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Neurônios Motores/metabolismo , Terminações Pré-Sinápticas , Probabilidade , Receptores de Glutamato/metabolismo
3.
J Neurosci ; 40(25): 4824-4841, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32414783

RESUMO

VGCCs are multisubunit complexes that play a crucial role in neuronal signaling. Auxiliary α2δ subunits of VGCCs modulate trafficking and biophysical properties of the pore-forming α1 subunit and trigger excitatory synaptogenesis. Alterations in the expression level of α2δ subunits were implicated in several syndromes and diseases, including chronic neuropathic pain, autism, and epilepsy. However, the contribution of distinct α2δ subunits to excitatory/inhibitory imbalance and aberrant network connectivity characteristic for these pathologic conditions remains unclear. Here, we show that α2δ1 overexpression enhances spontaneous neuronal network activity in developing and mature cultures of hippocampal neurons. In contrast, overexpression, but not downregulation, of α2δ3 enhances neuronal firing in immature cultures, whereas later in development it suppresses neuronal activity. We found that α2δ1 overexpression increases excitatory synaptic density and selectively enhances presynaptic glutamate release, which is impaired on α2δ1 knockdown. Overexpression of α2δ3 increases the excitatory synaptic density as well but also facilitates spontaneous GABA release and triggers an increase in the density of inhibitory synapses, which is accompanied by enhanced axonaloutgrowth in immature interneurons. Together, our findings demonstrate that α2δ1 and α2δ3 subunits play distinct but complementary roles in driving formation of structural and functional network connectivity during early development. An alteration in α2δ surface expression during critical developmental windows can therefore play a causal role and have a profound impact on the excitatory-to-inhibitory balance and network connectivity.SIGNIFICANCE STATEMENT The computational capacity of neuronal networks is determined by their connectivity. Chemical synapses are the main interface for transfer of information between individual neurons. The initial formation of network connectivity requires spontaneous electrical activity and the calcium channel-mediated signaling. We found that, in early development, auxiliary α2δ3 subunits of calcium channels foster presynaptic release of GABA, trigger formation of inhibitory synapses, and promote axonal outgrowth in inhibitory interneurons. In contrast, later in development, α2δ1 subunits promote the glutamatergic neurotransmission and synaptogenesis, as well as strongly enhance neuronal network activity. We propose that formation of connectivity in neuronal networks is associated with a concerted interplay of α2δ1 and α2δ3 subunits of calcium channels.


Assuntos
Canais de Cálcio/metabolismo , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Células HEK293 , Humanos , Camundongos , Ratos , Transmissão Sináptica/fisiologia
4.
J Neurosci ; 39(17): 3175-3187, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30792272

RESUMO

Transient brain insults, including status epilepticus (SE), can trigger a period of epileptogenesis during which functional and structural reorganization of neuronal networks occurs resulting in the onset of focal epileptic seizures. In recent years, mechanisms that regulate the dynamic transcription of individual genes during epileptogenesis and thereby contribute to the development of a hyperexcitable neuronal network have been elucidated. Our own results have shown early growth response 1 (Egr1) to transiently increase expression of the T-type voltage-dependent Ca2+ channel (VDCC) subunit CaV3.2, a key proepileptogenic protein. However, epileptogenesis involves complex and dynamic transcriptomic alterations; and so far, our understanding of the transcriptional control mechanism of gene regulatory networks that act in the same processes is limited. Here, we have analyzed whether Egr1 acts as a key transcriptional regulator for genes contributing to the development of hyperexcitability during epileptogenesis. We found Egr1 to drive the expression of the VDCC subunit α2δ4, which was augmented early and persistently after pilocarpine-induced SE. Furthermore, we show that increasing levels of α2δ4 in the CA1 region of the hippocampus elevate seizure susceptibility of mice by slightly decreasing local network activity. Interestingly, we also detected increased expression levels of Egr1 and α2δ4 in human hippocampal biopsies obtained from epilepsy surgery. In conclusion, Egr1 controls the abundance of the VDCC subunits CaV3.2 and α2δ4, which act synergistically in epileptogenesis, and thereby contributes to a seizure-induced "transcriptional Ca2+ channelopathy."SIGNIFICANCE STATEMENT The onset of focal recurrent seizures often occurs after an epileptogenic process induced by transient insults to the brain. Recently, transcriptional control mechanisms for individual genes involved in converting neurons hyperexcitable have been identified, including early growth response 1 (Egr1), which activates transcription of the T-type Ca2+ channel subunit CaV3.2. Here, we find Egr1 to regulate also the expression of the voltage-dependent Ca2+ channel subunit α2δ4, which was augmented after pilocarpine- and kainic acid-induced status epilepticus. In addition, we observed that α2δ4 affected spontaneous network activity and the susceptibility for seizure induction. Furthermore, we detected corresponding dynamics in human biopsies from epilepsy patients. In conclusion, Egr1 orchestrates a seizure-induced "transcriptional Ca2+ channelopathy" consisting of CaV3.2 and α2δ4, which act synergistically in epileptogenesis.


Assuntos
Canais de Cálcio/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Convulsões/metabolismo , Estado Epiléptico/metabolismo , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/fisiopatologia , Humanos , Ácido Caínico , Masculino , Camundongos , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Pilocarpina , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia
5.
J Neurosci ; 38(38): 8277-8294, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30104341

RESUMO

Action potential-evoked neurotransmitter release is impaired in knock-out neurons lacking synaptic cell-adhesion molecules α-neurexins (αNrxns), the extracellularly longer variants of the three vertebrate Nrxn genes. Ca2+ influx through presynaptic high-voltage gated calcium channels like the ubiquitous P/Q-type (CaV2.1) triggers release of fusion-ready vesicles at many boutons. α2δ Auxiliary subunits regulate trafficking and kinetic properties of CaV2.1 pore-forming subunits but it has remained unclear if this involves αNrxns. Using live cell imaging with Ca2+ indicators, we report here that the total presynaptic Ca2+ influx in primary hippocampal neurons of αNrxn triple knock-out mice of both sexes is reduced and involved lower CaV2.1-mediated transients. This defect is accompanied by lower vesicle release, reduced synaptic abundance of CaV2.1 pore-forming subunits, and elevated surface mobility of α2δ-1 on axons. Overexpression of Nrxn1α in αNrxn triple knock-out neurons is sufficient to restore normal presynaptic Ca2+ influx and synaptic vesicle release. Moreover, coexpression of Nrxn1α together with α2δ-1 subunits facilitates Ca2+ influx further but causes little augmentation together with a different subunit, α2δ-3, suggesting remarkable specificity. Expression of defined recombinant CaV2.1 channels in heterologous cells validates and extends the findings from neurons. Whole-cell patch-clamp recordings show that Nrxn1α in combination with α2δ-1, but not with α2δ-3, facilitates Ca2+ currents of recombinant CaV2.1 without altering channel kinetics. These results suggest that presynaptic Nrxn1α acts as a positive regulator of Ca2+ influx through CaV2.1 channels containing α2δ-1 subunits. We propose that this regulation represents an important way for neurons to adjust synaptic strength.SIGNIFICANCE STATEMENT Synaptic transmission between neurons depends on the fusion of neurotransmitter-filled vesicles with the presynaptic membrane, which subsequently activates postsynaptic receptors. Influx of calcium ions into the presynaptic terminal is the key step to trigger vesicle release and involves different subtypes of voltage-gated calcium channels. We study the regulation of calcium channels by neurexins, a family of synaptic cell-adhesion molecules that are essential for many synapse properties. Using optical measurements of calcium influx in cultured neurons and electrophysiological recordings of calcium currents from recombinant channels, we show that a major neurexin variant facilitates calcium influx through P/Q-type channels by interacting with their α2δ-1 auxiliary subunits. These results propose a novel way how neurons can modulate the strength of distinct synapses.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Cálcio/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Axônios/metabolismo , Proteínas de Ligação ao Cálcio , Hipocampo/metabolismo , Camundongos , Moléculas de Adesão de Célula Nervosa/genética , Transmissão Sináptica/fisiologia
6.
J Biol Chem ; 293(3): 1040-1053, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29180451

RESUMO

L-type voltage-gated CaV1.2 calcium channels (CaV1.2) are key regulators of neuronal excitability, synaptic plasticity, and excitation-transcription coupling. Surface-exposed CaV1.2 distributes in clusters along the dendrites of hippocampal neurons. A permanent exchange between stably clustered and laterally diffusive extra-clustered channels maintains steady-state levels of CaV1.2 at dendritic signaling domains. A dynamic equilibrium between anchored and diffusive receptors is a common feature among ion channels and is crucial to modulate signaling transduction. Despite the importance of this fine regulatory system, the molecular mechanisms underlying the surface dynamics of CaV1.2 are completely unexplored. Here, we examined the dynamic states of CaV1.2 depending on phosphorylation on Ser-1700 and Ser-1928 at the channel C terminus. Phosphorylation at these sites is strongly involved in CaV1.2-mediated nuclear factor of activated T cells (NFAT) signaling, long-term potentiation, and responsiveness to adrenergic stimulation. We engineered CaV1.2 constructs mimicking phosphorylation at Ser-1700 and Ser-1928 and analyzed their behavior at the membrane by immunolabeling protocols, fluorescence recovery after photobleaching, and single particle tracking. We found that the phosphomimetic S1928E variant increases the mobility of CaV1.2 without altering the steady-state maintenance of cluster in young neurons and favors channel stabilization later in differentiation. Instead, mimicking phosphorylation at Ser-1700 promoted the diffusive state of CaV1.2 irrespective of the differentiation stage. Together, these results reveal that phosphorylation could contribute to the establishment of channel anchoring mechanisms depending on the neuronal differentiation state. Finally, our findings suggest a novel mechanism by which phosphorylation at the C terminus regulates calcium signaling by tuning the content of CaV1.2 at signaling complexes.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Hipocampo/citologia , Neurônios/citologia , Neurônios/metabolismo , Animais , Eletrofisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Dinâmica Molecular , Fosforilação , Ratos , Ratos Sprague-Dawley
7.
Mult Scler ; 25(14): 1870-1877, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30463473

RESUMO

BACKGROUND: The month-of-birth-effect (MoBE) describes the finding that multiple sclerosis (MS) patients seem to have been born significantly more frequently in spring, with a rise in May, and significantly less often in autumn and winter with the fewest births in November. OBJECTIVES: To analyse if the MoBE can also be found in the Austrian MS population, and if so, whether the pattern is similar to the reported pattern in Canada, United Kingdom, and some Scandinavian countries. METHODS: The data of 7886 MS patients in Austria were compared to all live births in Austria from 1940 to 2010, that is, 7.256545 data entries of the Austrian birth registry and analysed in detail. RESULTS: Patterns observed in our MS cohort were not different from patterns in the general population, even when stratifying for gender. However, the noticeable and partly significant ups and downs over the examined years did not follow the distinct specific pattern with highest birth rates in spring and lowest birth rates in autumn that has been described previously for countries above the 49th latitude. CONCLUSION: After correcting for month-of-birth patterns in the general Austrian population, there is no evidence for the previously described MoBE in Austrian MS patients.


Assuntos
Esclerose Múltipla/epidemiologia , Áustria/epidemiologia , Feminino , Humanos , Incidência , Masculino , Prevalência , Sistema de Registros , Fatores de Risco , Estações do Ano
8.
Cereb Cortex ; 28(7): 2594-2609, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790938

RESUMO

Mature granule cells are poorly excitable neurons that were recently shown to fire action potentials, preferentially in bursts. It is believed that the particularly pronounced short-term facilitation of mossy fiber synapses makes granule cell bursting a very effective means of properly transferring information to CA3. However, the mechanism underlying the unique bursting behavior of mature granule cells is currently unknown. Here, we show that Cav3.2 T-type channels at the axon initial segment are responsible for burst firing of mature granule cells in rats and mice. Accordingly, Cav3.2 knockout mice fire tonic spikes and exhibit impaired bursting, synaptic plasticity and dentate-to-CA3 communication. The data show that Cav3.2 channels are strong modulators of bursting and can be considered a critical molecular switch that enables effective information transfer from mature granule cells to the CA3 pyramids.


Assuntos
Potenciais de Ação/genética , Canais de Cálcio Tipo T/deficiência , Giro Denteado/citologia , Neurônios/fisiologia , Animais , Biofísica , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/genética , Estimulação Elétrica , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/genética , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Via Perfurante/fisiologia , Ratos , Ratos Wistar , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética
9.
Gut ; 67(2): 263-270, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-27872184

RESUMO

OBJECTIVE: IBS is a common gut disorder of uncertain pathogenesis. Among other factors, genetics and certain foods are proposed to contribute. Congenital sucrase-isomaltase deficiency (CSID) is a rare genetic form of disaccharide malabsorption characterised by diarrhoea, abdominal pain and bloating, which are features common to IBS. We tested sucrase-isomaltase (SI) gene variants for their potential relevance in IBS. DESIGN: We sequenced SI exons in seven familial cases, and screened four CSID mutations (p.Val557Gly, p.Gly1073Asp, p.Arg1124Ter and p.Phe1745Cys) and a common SI coding polymorphism (p.Val15Phe) in a multicentre cohort of 1887 cases and controls. We studied the effect of the 15Val to 15Phe substitution on SI function in vitro. We analysed p.Val15Phe genotype in relation to IBS status, stool frequency and faecal microbiota composition in 250 individuals from the general population. RESULTS: CSID mutations were more common in patients than asymptomatic controls (p=0.074; OR=1.84) and Exome Aggregation Consortium reference sequenced individuals (p=0.020; OR=1.57). 15Phe was detected in 6/7 sequenced familial cases, and increased IBS risk in case-control and population-based cohorts, with best evidence for diarrhoea phenotypes (combined p=0.00012; OR=1.36). In the population-based sample, 15Phe allele dosage correlated with stool frequency (p=0.026) and Parabacteroides faecal microbiota abundance (p=0.0024). The SI protein with 15Phe exhibited 35% reduced enzymatic activity in vitro compared with 15Val (p<0.05). CONCLUSIONS: SI gene variants coding for disaccharidases with defective or reduced enzymatic activity predispose to IBS. This may help the identification of individuals at risk, and contribute to personalising treatment options in a subset of patients.


Assuntos
Síndrome do Intestino Irritável/enzimologia , Síndrome do Intestino Irritável/genética , Complexo Sacarase-Isomaltase/genética , Complexo Sacarase-Isomaltase/metabolismo , Adulto , Animais , Erros Inatos do Metabolismo dos Carboidratos/genética , Estudos de Casos e Controles , Linhagem Celular , Membrana Celular/enzimologia , Análise Mutacional de DNA , Defecação/genética , Diarreia/etiologia , Éxons , Fezes/microbiologia , Feminino , Dosagem de Genes , Genótipo , Haplorrinos , Humanos , Síndrome do Intestino Irritável/complicações , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Complexo Sacarase-Isomaltase/deficiência , Transfecção
10.
Mult Scler ; 23(11): 1517-1526, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28528566

RESUMO

BACKGROUND: Evidence supporting the effectiveness of aerobic training, specific for fatigue, in severely fatigued patients with multiple sclerosis (MS) is lacking. OBJECTIVE: To estimate the effectiveness of aerobic training on MS-related fatigue and societal participation in ambulant patients with severe MS-related fatigue. METHODS: Patients ( N = 90) with severe MS-related fatigue were allocated to 16-week aerobic training or control intervention. Primary outcomes were perceived fatigue (Checklist Individual Strength (CIS20r) fatigue subscale) and societal participation. An improvement of ⩾8 points on the CIS20r fatigue subscale was considered clinically relevant. Outcomes were assessed by a blinded observer at baseline, 2, 4, 6 and 12 months. RESULTS: Of the 89 patients that started treatment (median Expanded Disability Status Scale (interquartile range), 3.0 (2.0-3.6); mean CIS20r fatigue subscale (standard deviation (SD)), 42.6 (8.0)), 43 received aerobic training and 46 received the control intervention. A significant post-intervention between-group mean difference (MD) on the CIS20r fatigue subscale of 4.708 (95% confidence interval (CI) = 1.003-8.412; p = 0.014) points was found in favour of aerobic training that, however, was not sustained during follow-up. No effect was found on societal participation. CONCLUSION: Aerobic training in MS patients with severe fatigue does not lead to a clinically meaningful reduction in fatigue or societal participation when compared to a low-intensity control intervention.


Assuntos
Terapia por Exercício/métodos , Fadiga/reabilitação , Esclerose Múltipla/reabilitação , Avaliação de Resultados em Cuidados de Saúde , Participação Social , Adulto , Exercício Físico/fisiologia , Fadiga/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Método Simples-Cego
11.
Proc Natl Acad Sci U S A ; 111(13): E1274-83, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639499

RESUMO

Neurotransmission at different synapses is highly variable, and cell-adhesion molecules like α-neurexins (α-Nrxn) and their extracellular binding partners determine synapse function. Although α-Nrxn affect transmission at excitatory and inhibitory synapses, the contribution of neurexophilin-1 (Nxph1), an α-Nrxn ligand with restricted expression in subpopulations of inhibitory neurons, is unclear. To reveal its role, we investigated mice that either lack or overexpress Nxph1. We found that genetic deletion of Nxph1 impaired GABAB receptor (GABA(B)R)-dependent short-term depression of inhibitory synapses in the nucleus reticularis thalami, a region where Nxph1 is normally expressed at high levels. To test the conclusion that Nxph1 supports presynaptic GABA(B)R, we expressed Nxph1 ectopically at excitatory terminals in the neocortex, which normally do not contain this molecule but can be modulated by GABA(B)R. We generated Nxph1-GFP transgenic mice under control of the Thy1.2 promoter and observed a reduced short-term facilitation at these excitatory synapses, representing an inverse phenotype to the knockout. Consistently, the diminished facilitation could be reversed by pharmacologically blocking GABA(B)R with CGP-55845. Moreover, a complete rescue was achieved by additional blocking of postsynaptic GABA(A)R with intracellular picrotoxin or gabazine, suggesting that Nxph1 is able to recruit or stabilize both presynaptic GABA(B)R and postsynaptic GABA(A)R. In support, immunoelectron microscopy validated the localization of ectopic Nxph1 at the synaptic cleft of excitatory synapses in transgenic mice and revealed an enrichment of GABA(A)R and GABA(B)R subunits compared with wild-type animals. Thus, our data propose that Nxph1 plays an instructive role in synaptic short-term plasticity and the configuration with GABA receptors.


Assuntos
Neurônios GABAérgicos/metabolismo , Glicoproteínas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Sinapses/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Interneurônios/metabolismo , Ligantes , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Subunidades Proteicas/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Especificidade por Substrato , Sinapses/ultraestrutura , Tálamo/metabolismo , Tálamo/ultraestrutura
12.
J Neurosci ; 35(40): 13629-47, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26446217

RESUMO

Synapses depend on trafficking of key membrane proteins by lateral diffusion from surface populations and by exocytosis from intracellular pools. The cell adhesion molecule neurexin (Nrxn) plays essential roles in synapses, but the dynamics and regulation of its trafficking are unknown. Here, we performed single-particle tracking and live imaging of transfected, epitope-tagged Nrxn variants in cultured rat and mouse wild-type or knock-out neurons. We observed that structurally larger αNrxn molecules are more mobile in the plasma membrane than smaller ßNrxns because αNrxns displayed higher diffusion coefficients in extrasynaptic regions and excitatory or inhibitory terminals. We found that well characterized interactions with extracellular binding partners regulate the surface mobility of Nrxns. Binding to neurexophilin-1 (Nxph1) reduced the surface diffusion of αNrxns when both molecules were coexpressed. Conversely, impeding other interactions by insertion of splice sequence #4 or removal of extracellular Ca(2+) augmented the mobility of αNrxns and ßNrxns. We also determined that fast axonal transport delivers Nrxns to the neuronal surface because Nrxns comigrate as cargo on synaptic vesicle protein transport vesicles (STVs). Unlike surface mobility, intracellular transport of ßNrxn(+) STVs was faster than that of αNrxns, but both depended on the microtubule motor protein KIF1A and neuronal activity regulated the velocity. Large spontaneous fusion of Nrxn(+) STVs occurred simultaneously with synaptophysin on axonal membranes mostly outside of active presynaptic terminals. Surface Nrxns enriched at synaptic terminals where αNrxns and Nxph1/αNrxns recruited GABAAR subunits. Therefore, our results identify regulated dynamic trafficking as an important property of Nrxns that corroborates their function at synapses. SIGNIFICANCE STATEMENT: Synapses mediate most functions in our brains and depend on the precise and timely delivery of key molecules throughout life. Neurexins (Nrxns) are essential synaptic cell adhesion molecules that are involved in synaptic transmission and differentiation of synaptic contacts. In addition, Nrxns have been linked to neuropsychiatric diseases such as autism. Because little is known about the dynamic aspects of trafficking of neurexins to synapses, we investigated this important question using single-molecule tracking and time-lapse imaging. We identify distinct differences between major Nrxn variants both in surface mobility and during intracellular transport. Because their dynamic behavior is highly regulated, for example, by different binding activities, these processes have immediate consequences for the function of Nrxns at synapses.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/metabolismo , Neurotoxinas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Proteínas de Ligação ao GTP/metabolismo , Glicoproteínas/metabolismo , Guanilato Quinases/metabolismo , Hipocampo/citologia , Cinesinas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Neurotoxinas/genética , Ligação Proteica/genética , Transporte Proteico/genética , Ratos , Sinaptotagmina I/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
13.
Mult Scler ; 22(2): 231-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26014607

RESUMO

BACKGROUND: In persons with MS (pwMS), a lower cardiopulmonary fitness has been associated with a higher risk for secondary disorders, decreased functional capacity, symptom worsening and reduced health-related quality of life. OBJECTIVE: To investigate the association between disease severity and cardiopulmonary fitness. METHODS: Data from cardiopulmonary exercise tests, previously conducted in three different countries, were pooled. The association between disease severity (Expanded Disability Status Scale (EDSS)) and cardiopulmonary fitness (peak oxygen uptake (VO2peak)) was adjusted for age, sex and the country of origin. RESULTS: The combined sample comprised 116 ambulant pwMS having a mean (± SD) EDSS score of 2.7 ± 1.3. There was a significant correlation (r = -0.418, p < .01) between VO2peak and EDSS. A multiple regression model (R(2) = 0.520, p < .01) was constructed to describe VO2peak (mL∙kg(-1)∙min(-1)); VO2peak = 36.622 - 5.433 (Sex (1=men)) - 0.124 (Age) - 2.082 (EDSS) + 2.737 (Belgium) + 8.674 (Denmark). CONCLUSION: There was a significant association between disease severity and cardiopulmonary fitness. The close relation between cardiopulmonary fitness and chronic conditions associated with physical inactivity, suggest a progressive increase in risk of secondary health conditions in pwMS.


Assuntos
Esclerose Múltipla/fisiopatologia , Consumo de Oxigênio/fisiologia , Aptidão Física/fisiologia , Adulto , Bélgica , Dinamarca , Teste de Esforço , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Países Baixos , Índice de Gravidade de Doença
14.
Arch Phys Med Rehabil ; 97(11): 1887-1894.e1, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27233157

RESUMO

OBJECTIVES: (1) To assess real-time patterns of fatigue; (2) to assess the association between a real-time fatigue score and 3 commonly used questionnaires (Checklist Individual Strength [CIS] fatigue subscale, Modified Fatigue Impact Scale (MFIS), and Fatigue Severity Scale [FSS]); and (3) to establish factors that confound the association between the real-time fatigue score and the conventional fatigue questionnaires in patients with multiple sclerosis (MS). DESIGN: Cross-sectional study. SETTING: MS-specialized outpatient facility. PARTICIPANTS: Ambulant patients with MS (N=165) experiencing severe self-reported fatigue. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: A real-time fatigue score was assessed by sending participants 4 text messages on a particular day (How fatigued do you feel at this moment?; score range, 0-10). Latent class growth mixed modeling was used to determine diurnal patterns of fatigue. Regression analyses were used to assess the association between the mean real-time fatigue score and the CIS fatigue subscale, MFIS, and FSS. Significant associations were tested for candidate confounders (eg, disease severity, work status, sleepiness). RESULTS: Four significantly different fatigue profiles were identified by the real-time fatigue score, namely a stable high (n=79), increasing (n=57), stable low (n=16), and decreasing (n=13). The conventional questionnaires correlated poorly (r<.300) with the real-time fatigue score. The Epworth Sleepiness Scale significantly reduced the regression coefficient between the real-time fatigue score and conventional questionnaires, ranging from 15.4% to 35%. CONCLUSIONS: Perceived fatigue showed 4 different diurnal patterns in patients with MS. Severity of sleepiness is an important confounder to take into account in the assessment of fatigue.


Assuntos
Fadiga/epidemiologia , Fadiga/fisiopatologia , Esclerose Múltipla/epidemiologia , Modalidades de Fisioterapia , Inquéritos e Questionários/normas , Adulto , Ritmo Circadiano , Estudos Transversais , Avaliação da Deficiência , Fadiga/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/psicologia , Percepção , Análise de Regressão , Reprodutibilidade dos Testes , Autorrelato , Índice de Gravidade de Doença
15.
Biophys J ; 109(7): 1463-71, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26445447

RESUMO

Observation of molecular dynamics is often biased by the optical very heterogeneous environment of cells and complex tissue. Here, we have designed an algorithm that facilitates molecular dynamic analyses within brain slices. We adjust fast astigmatism-based three-dimensional single-particle tracking techniques to depth-dependent optical aberrations induced by the refractive index mismatch so that they are applicable to complex samples. In contrast to existing techniques, our online calibration method determines the aberration directly from the acquired two-dimensional image stream by exploiting the inherent particle movement and the redundancy introduced by the astigmatism. The method improves the positioning by reducing the systematic errors introduced by the aberrations, and allows correct derivation of the cellular morphology and molecular diffusion parameters in three dimensions independently of the imaging depth. No additional experimental effort for the user is required. Our method will be useful for many imaging configurations, which allow imaging in deep cellular structures.


Assuntos
Algoritmos , Encéfalo/metabolismo , Imageamento Tridimensional/métodos , Imagem Molecular/métodos , Técnicas de Cultura de Tecidos/métodos , Animais , Encéfalo/citologia , Calibragem , Difusão , Camundongos , Modelos Neurológicos , Simulação de Dinâmica Molecular , Tempo
16.
J Biol Chem ; 289(13): 8973-88, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24554721

RESUMO

Formation, maintenance, and activity of excitatory and inhibitory synapses are essential for neuronal network function. Cell adhesion molecules (CAMs) are crucially involved in these processes. The CAM neuroplastin-65 (Np65) highly expressed during periods of synapse formation and stabilization is present at the pre- and postsynaptic membranes. Np65 can translocate into synapses in response to electrical stimulation and it interacts with subtypes of GABAA receptors in inhibitory synapses. Here, we report that in the murine hippocampus and in hippocampal primary culture, neurons of the CA1 region and the dentate gyrus (DG) express high Np65 levels, whereas expression in CA3 neurons is lower. In neuroplastin-deficient (Np(-/-)) mice the number of excitatory synapses in CA1 and DG, but not CA3 regions is reduced. Notably this picture is mirrored in mature Np(-/-) hippocampal cultures or in mature CA1 and DG wild-type (Np(+/+)) neurons treated with a function-blocking recombinant Np65-Fc extracellular fragment. Although the number of GABAergic synapses was unchanged in Np(-/-) neurons or in mature Np65-Fc-treated Np(+/+) neurons, the ratio of excitatory to inhibitory synapses was significantly lower in Np(-/-) cultures. Furthermore, GABAA receptor composition was altered at inhibitory synapses in Np(-/-) neurons as the α1 to α2 GABAA receptor subunit ratio was increased. Changes of excitatory and inhibitory synaptic function in Np(-/-) neurons were confirmed evaluating the presynaptic release function and using patch clamp recording. These data demonstrate that Np65 is an important regulator of the number and function of synapses in the hippocampus.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Potenciais Pós-Sinápticos Inibidores , Glicoproteínas de Membrana/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/citologia , Contagem de Células , Giro Denteado/citologia , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Glicoproteínas de Membrana/deficiência , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Subunidades Proteicas/metabolismo , Transporte Proteico , Ratos
17.
Cochrane Database Syst Rev ; (9): CD009956, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26358158

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system affecting an estimated 1.3 million people worldwide. It is characterised by a variety of disabling symptoms of which excessive fatigue is the most frequent. Fatigue is often reported as the most invalidating symptom in people with MS. Various mechanisms directly and indirectly related to the disease and physical inactivity have been proposed to contribute to the degree of fatigue. Exercise therapy can induce physiological and psychological changes that may counter these mechanisms and reduce fatigue in MS. OBJECTIVES: To determine the effectiveness and safety of exercise therapy compared to a no-exercise control condition or another intervention on fatigue, measured with self-reported questionnaires, of people with MS. SEARCH METHODS: We searched the Cochrane Multiple Sclerosis and Rare Diseases of the Central Nervous System Group Trials Specialised Register, which, among other sources, contains trials from: the Cochrane Central Register of Controlled Trials (CENTRAL) (2014, Issue 10), MEDLINE (from 1966 to October 2014), EMBASE (from 1974 to October 2014), CINAHL (from 1981 to October 2014), LILACS (from 1982 to October 2014), PEDro (from 1999 to October 2014), and Clinical trials registries (October 2014). Two review authors independently screened the reference lists of identified trials and related reviews. SELECTION CRITERIA: We included randomized controlled trials (RCTs) evaluating the efficacy of exercise therapy compared to no exercise therapy or other interventions for adults with MS that included subjective fatigue as an outcome. In these trials, fatigue should have been measured using questionnaires that primarily assessed fatigue or sub-scales of questionnaires that measured fatigue or sub-scales of questionnaires not primarily designed for the assessment of fatigue but explicitly used as such. DATA COLLECTION AND ANALYSIS: Two review authors independently selected the articles, extracted data, and determined methodological quality of the included trials. Methodological quality was determined by means of the Cochrane 'risk of bias' tool and the PEDro scale. The combined body of evidence was summarised using the GRADE approach. The results were aggregated using meta-analysis for those trials that provided sufficient data to do so. MAIN RESULTS: Forty-five trials, studying 69 exercise interventions, were eligible for this review, including 2250 people with MS. The prescribed exercise interventions were categorised as endurance training (23 interventions), muscle power training (nine interventions), task-oriented training (five interventions), mixed training (15 interventions), or 'other' (e.g. yoga; 17 interventions). Thirty-six included trials (1603 participants) provided sufficient data on the outcome of fatigue for meta-analysis. In general, exercise interventions were studied in mostly participants with the relapsing-remitting MS phenotype, and with an Expanded Disability Status Scale less than 6.0. Based on 26 trials that used a non-exercise control, we found a significant effect on fatigue in favour of exercise therapy (standardized mean difference (SMD) -0.53, 95% confidence interval (CI) -0.73 to -0.33; P value < 0.01). However, there was significant heterogeneity between trials (I(2) > 58%). The mean methodological quality, as well as the combined body of evidence, was moderate. When considering the different types of exercise therapy, we found a significant effect on fatigue in favour of exercise therapy compared to no exercise for endurance training (SMDfixed effect -0.43, 95% CI -0.69 to -0.17; P value < 0.01), mixed training (SMDrandom effect -0.73, 95% CI -1.23 to -0.23; P value < 0.01), and 'other' training (SMDfixed effect -0.54, 95% CI -0.79 to -0.29; P value < 0.01). Across all studies, one fall was reported. Given the number of MS relapses reported for the exercise condition (N = 25) and non-exercise control condition (N = 26), exercise does not seem to be associated with a significant risk of a MS relapse. However, in general, MS relapses were defined and reported poorly. AUTHORS' CONCLUSIONS: Exercise therapy can be prescribed in people with MS without harm. Exercise therapy, and particularly endurance, mixed, or 'other' training, may reduce self reported fatigue. However, there are still some important methodological issues to overcome. Unfortunately, most trials did not explicitly include people who experienced fatigue, did not target the therapy on fatigue specifically, and did not use a validated measure of fatigue as the primary measurement of outcome.


Assuntos
Terapia por Exercício/métodos , Fadiga/terapia , Esclerose Múltipla/complicações , Esclerose Múltipla/reabilitação , Condicionamento Físico Humano/métodos , Adulto , Fadiga/etiologia , Humanos , Resistência Física , Ensaios Clínicos Controlados Aleatórios como Assunto , Treinamento Resistido , Yoga
18.
Arch Phys Med Rehabil ; 96(11): 2055-66, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25969865

RESUMO

OBJECTIVE: To investigate the feasibility and safety of cardiopulmonary exercise testing (CPET) in patients with multiple sclerosis (MS). DATA SOURCES: PubMed, EMBASE, CINAHL, SPORTDiscus, PsycINFO, ERIC, and the Psychology and Behavioral Sciences Collection were searched up to October 2014. References from retrieved articles were examined to identify additional relevant studies. STUDY SELECTION: Inclusion of original studies was on the basis of performance of maximal CPET, description of the protocol, and participants with definite MS aged ≥18 years. No language restrictions were applied. DATA EXTRACTION: The quality of CPET reporting in included studies was scored according to a structured checklist considering 10 feasibility (eg, test abnormalities) and 12 safety quality criteria (eg, adverse events). Structured data extraction was performed for these feasibility and safety features of CPET. DATA SYNTHESIS: Forty-six studies were included, comprising 1483 patients with MS, with a mean age ± SD of 42.0±5.8 years and a median Expanded Disability Status Scale (EDSS) score of 2.8 (first quartile=2.1; third quartile=3.9; range of average EDSS scores, .75-5.8). Quality of reporting on CPET varied from 3 to 13 out of a possible 22 quality points. The percentage of test abnormalities (feasibility) was 10.0%, primarily because of an inability to maintain pedaling at a specific resistance. The percentage of adverse events (safety) was 2.1%. All adverse events were temporary. CONCLUSIONS: Based on the available data, we conclude that CPET is feasible provided that the CPET modality is tailored to the physical abilities of the patient. Furthermore, CPET is safe when recommended precautions and safety measures are implemented. However, future optimization of CPET will require protocolized testing and the implementation of standard reporting procedures.


Assuntos
Teste de Esforço/métodos , Esclerose Múltipla/reabilitação , Segurança do Paciente , Pessoas com Deficiência , Humanos
19.
Proc Natl Acad Sci U S A ; 109(9): 3522-7, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22331885

RESUMO

Trafficking of AMPA receptors (AMPARs) plays a key role in synaptic transmission. However, a general framework integrating the two major mechanisms regulating AMPAR delivery at postsynapses (i.e., surface diffusion and internal recycling) is lacking. To this aim, we built a model based on numerical trajectories of individual AMPARs, including free diffusion in the extrasynaptic space, confinement in the synapse, and trapping at the postsynaptic density (PSD) through reversible interactions with scaffold proteins. The AMPAR/scaffold kinetic rates were adjusted by comparing computer simulations to single-particle tracking and fluorescence recovery after photobleaching experiments in primary neurons, in different conditions of synapse density and maturation. The model predicts that the steady-state AMPAR number at synapses is bidirectionally controlled by AMPAR/scaffold binding affinity and PSD size. To reveal the impact of recycling processes in basal conditions and upon synaptic potentiation or depression, spatially and temporally defined exocytic and endocytic events were introduced. The model predicts that local recycling of AMPARs close to the PSD, coupled to short-range surface diffusion, provides rapid control of AMPAR number at synapses. In contrast, because of long-range diffusion limitations, extrasynaptic recycling is intrinsically slower and less synapse-specific. Thus, by discriminating the relative contributions of AMPAR diffusion, trapping, and recycling events on spatial and temporal bases, this model provides unique insights on the dynamic regulation of synaptic strength.


Assuntos
Simulação por Computador , Modelos Neurológicos , Transporte Proteico , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Ligação Competitiva , Difusão , Endocitose , Potenciais Pós-Sinápticos Excitadores/fisiologia , Recuperação de Fluorescência Após Fotodegradação , Hipocampo/citologia , Membranas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Neurônios/ultraestrutura , Densidade Pós-Sináptica/metabolismo , Ligação Proteica , Ratos , Proteínas Recombinantes de Fusão/metabolismo
20.
Cell Commun Signal ; 12: 75, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25477292

RESUMO

BACKGROUND: B cells are important effectors and regulators of adaptive and innate immune responses, inflammation and autoimmunity, for instance in anti-NMDA-receptor (NMDAR) encephalitis. Thus, pharmacological modulation of B-cell function could be an effective regimen in therapeutic strategies. Since the non-competitive NMDAR antagonist memantine is clinically applied to treat advanced Alzheimer`s disease and ketamine is supposed to improve the course of resistant depression, it is important to know how these drugs affect B-cell function. RESULTS: Non-competitive NMDAR antagonists impaired B-cell receptor (BCR)- and lipopolysaccharide (LPS)-induced B-cell proliferation, reduced B-cell migration towards the chemokines SDF-1α and CCL21 and downregulated IgM and IgG secretion. Mechanistically, these effects were mediated through a blockade of Kv1.3 and KCa3.1 potassium channels and resulted in an attenuated Ca(2+)-flux and activation of Erk1/2, Akt and NFATc1. Interestingly, NMDAR antagonist treatment increased the frequency of IL-10 producing B cells after BCR/CD40 stimulation. CONCLUSIONS: Non-competitive NMDAR antagonists attenuate BCR and Toll-like receptor 4 (TLR4) B-cell signaling and effector function and can foster IL-10 production. Consequently, NMDAR antagonists may be useful to target B cells in autoimmune diseases or pathological systemic inflammation. The drugs' additional side effects on B cells should be considered in treatments of neuronal disorders with NMDAR antagonists.


Assuntos
Linfócitos B/efeitos dos fármacos , Interleucina-10/metabolismo , Piperidinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linfócitos B/metabolismo , Antígenos CD40/metabolismo , Proliferação de Células/efeitos dos fármacos , Imunoglobulina G/metabolismo , Imunoglobulina M/metabolismo , Interferon gama/metabolismo , Interleucina-10/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Canal de Potássio Kv1.3/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos B/metabolismo , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA