RESUMO
A variety of pulmonary insults can prompt the need for life-saving mechanical ventilation; however, misuse, prolonged use, or an excessive inflammatory response, can result in ventilator-induced lung injury. Past research has observed an increased instance of respiratory distress in older patients and differences in the inflammatory response. To address this, we performed high pressure ventilation on young (2-3 months) and old (20-25 months) mice for 2 hours and collected data for macrophage phenotypes and lung tissue integrity. Large differences in macrophage activation at baseline and airspace enlargement after ventilation were observed in the old mice. The experimental data was used to determine plausible trajectories for a mathematical model of the inflammatory response to lung injury which includes variables for the innate inflammatory cells and mediators, epithelial cells in varying states, and repair mediators. Classification methods were used to identify influential parameters separating the parameter sets associated with the young or old data and separating the response to ventilation, which was measured by changes in the epithelial state variables. Classification methods ranked parameters involved in repair and damage to the epithelial cells and those associated with classically activated macrophages to be influential. Sensitivity results were used to determine candidate in-silico interventions and these interventions were most impact for transients associated with the old data, specifically those with poorer lung health prior to ventilation. Model results identified dynamics involved in M1 macrophages as a focus for further research, potentially driving the age-dependent differences in all macrophage phenotypes. The model also supported the pro-inflammatory response as a potential indicator of age-dependent differences in response to ventilation. This mathematical model can serve as a baseline model for incorporating other pulmonary injuries.
Assuntos
Pulmão , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Camundongos , Animais , Idoso , Respiração Artificial/efeitos adversos , Macrófagos , Modelos TeóricosRESUMO
Repair and regeneration of a diseased lung using stem cells or bioengineered tissues is an exciting therapeutic approach for a variety of lung diseases and critical illnesses. Over the past decade, increasing evidence from preclinical models suggests that mesenchymal stromal cells, which are not normally resident in the lung, can be used to modulate immune responses after injury, but there have been challenges in translating these promising findings to the clinic. In parallel, there has been a surge in bioengineering studies investigating the use of artificial and acellular lung matrices as scaffolds for three-dimensional lung or airway regeneration, with some recent attempts of transplantation in large animal models. The combination of these studies with those involving stem cells, induced pluripotent stem cell derivatives, and/or cell therapies is a promising and rapidly developing research area. These studies have been further paralleled by significant increases in our understanding of the molecular and cellular events by which endogenous lung stem and/or progenitor cells arise during lung development and participate in normal and pathological remodeling after lung injury. For the 2023 Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases Conference, scientific symposia were chosen to reflect the most cutting-edge advances in these fields. Sessions focused on the integration of "omics" technologies with function, the influence of immune cells on regeneration, and the role of the extracellular matrix in regeneration. The necessity for basic science studies to enhance fundamental understanding of lung regeneration and to design innovative translational studies was reinforced throughout the conference.
Assuntos
Bioengenharia , Pneumopatias , Pulmão , Humanos , Pneumopatias/terapia , Pneumopatias/patologia , Pulmão/patologia , Animais , Bioengenharia/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco/citologia , Engenharia Tecidual/métodos , Regeneração/fisiologia , Transplante de Células-Tronco/métodosRESUMO
The large airways are a critical component of the respiratory tree serving both an immunoprotective role and a physiological role for ventilation. The physiological role of the large airways is to move a large amount of air to and from the gas exchange surfaces of the alveoli. This air becomes divided along the respiratory tree as it moves from the large airways to smaller airways, bronchioles, and alveoli. The large airways are incredibly important from an immunoprotective role as the large airways are an early line of defense against inhaled particles, bacteria, and viruses. The key immunoprotective feature of the large airways is mucus production and mucociliary clearance mechanism. Each of these key features of the lung is important from both a basic physiology perspective and an engineering perspective for regenerative medicine. In this chapter, we will cover the large airways from an engineering perspective to highlight existing models of the large airways as well as future directions for modeling and repair.
Assuntos
Pulmão , Engenharia Tecidual , Pulmão/fisiologia , Fenômenos Fisiológicos Respiratórios , Depuração Mucociliar/fisiologia , Alvéolos PulmonaresRESUMO
Bioreactors for the reseeding of decellularized lung scaffolds have evolved with various advancements, including biomimetic mechanical stimulation, constant nutrient flow, multi-output monitoring, and large mammal scaling. Although dynamic bioreactors are not new to the field of lung bioengineering, ideal conditions during cell seeding have not been extensively studied or controlled. To address the lack of cell dispersal in traditional seeding methods, we have designed a two-step bioreactor. The first step is a novel system that rotates a seeded lung every 20 min at different angles in a sequence designed to anchor 20% of cells to a particular location based on the known rate of attachment. The second step involves perfusion-ventilation culture to ensure nutrient dispersion and cellular growth. Compared to statically seeded lungs, rotationally seeded lungs had significantly increased dsDNA content and more uniform cellular distribution after perfusion and ventilation had been administered. The addition of this novel seeding system before traditional culture methods will aid in recellularizing the lung and other geometrically complex organs for tissue engineering.
Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Reatores Biológicos , Pulmão , PerfusãoRESUMO
Despite the benefits of mechanical ventilators, prolonged or misuse of ventilators may lead to ventilation-associated/ventilation-induced lung injury (VILI). Lung insults, such as respiratory infections and lung injuries, can damage the pulmonary epithelium, with the most severe cases needing mechanical ventilation for effective breathing and survival. Damaged epithelial cells within the alveoli trigger a local immune response. A key immune cell is the macrophage, which can differentiate into a spectrum of phenotypes ranging from pro- to anti-inflammatory. To gain a greater understanding of the mechanisms of the immune response to VILI and post-ventilation outcomes, we developed a mathematical model of interactions between the immune system and site of damage while accounting for macrophage phenotype. Through Latin hypercube sampling we generated a collection of parameter sets that are associated with a numerical steady state. We then simulated ventilation-induced damage using these steady state values as the initial conditions in order to evaluate how baseline immune state and lung health affect outcomes. We used a variety of methods to analyze the resulting parameter sets, transients, and outcomes, including a random forest decision tree algorithm and parameter sensitivity with eFAST. Analysis shows that parameters and properties of transients related to epithelial repair and M1 activation are important factors. Using the results of this analysis, we hypothesized interventions and used these treatment strategies to modulate the response to ventilation for particular parameters sets.
Assuntos
Pneumonia , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Inflamação , Pulmão , Modelos Teóricos , Ventiladores MecânicosRESUMO
Decellularized tissues are biocompatible materials that engraft well, but the age of their source has not been explored for clinical translation. Advanced glycation end products (AGEs) are chemical cross-links that accrue on skeletal muscle collagen in old age, stiffening the matrix and increasing inflammation. Whether decellularized biomaterials derived from aged muscle would suffer from increased AGE collagen cross-links is unknown. We characterized gastrocnemii of 1-, 2-, and 20-month-old C57BL/6J mice before and after decellularization to determine age-dependent changes to collagen stiffness and AGE cross-linking. Total and soluble collagen was measured to assess if age-dependent increases in collagen and cross-linking persisted in decellularized muscle matrix (DMM). Stiffness of aged DMM was determined using atomic force microscopy. AGE levels and the effect of an AGE cross-link breaker, ALT-711, were tested in DMM samples. Our results show that age-dependent increases in collagen amount, cross-linking, and general stiffness were observed in DMM. Notably, we measured increased AGE-specific cross-links within old muscle, and observed that old DMM retained AGE cross-links using ALT-711 to reduce AGE levels. In conclusion, deleterious age-dependent modifications to collagen are present in DMM from old muscle, implying that age matters when sourcing skeletal muscle extracellular matrix as a biomaterial.
Assuntos
Envelhecimento/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Músculo Esquelético/metabolismo , Envelhecimento/patologia , Animais , Matriz Extracelular/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologiaRESUMO
Cell migration, a fundamental physiological process in which cells sense and move through their surrounding physical environment, plays a critical role in development and tissue formation, as well as pathological processes, such as cancer metastasis and wound healing. During cell migration, dynamics are governed by the bidirectional interplay between cell-generated mechanical forces and the activity of Rho GTPases, a family of small GTP-binding proteins that regulate actin cytoskeleton assembly and cellular contractility. These interactions are inherently more complex during the collective migration of mechanically coupled cells because of the additional regulation of cell-cell junctional forces. In this study, we adapted a recent minimal modeling framework to simulate the interactions between mechanochemical signaling in individual cells and interactions with cell-cell junctional forces during collective cell migration. We find that migration of individual cells depends on the feedback between mechanical tension and Rho GTPase activity in a biphasic manner. During collective cell migration, waves of Rho GTPase activity mediate mechanical contraction/extension and thus synchronization throughout the tissue. Further, cell-cell junctional forces exhibit distinct spatial patterns during collective cell migration, with larger forces near the leading edge. Larger junctional force magnitudes are associated with faster collective cell migration and larger tissue size. Simulations of heterogeneous tissue migration exhibit a complex dependence on the properties of both leading and trailing cells. Computational predictions demonstrate that collective cell migration depends on both the emergent dynamics and interactions between cellular-level Rho GTPase activity and contractility and multicellular-level junctional forces.
Assuntos
Movimento Celular , Junções Intercelulares/metabolismo , Mecanotransdução Celular , Modelos Teóricos , Citoesqueleto de Actina/metabolismo , Animais , Retroalimentação Fisiológica , Junções Intercelulares/química , Estresse Mecânico , Proteínas rho de Ligação ao GTP/metabolismoRESUMO
Primary cilia (PC) are solitary cellular organelles that play critical roles in development, homeostasis, and disease pathogenesis by modulating key signaling pathways such as Sonic Hedgehog and calcium flux. The antenna-like shape of PC enables them also to facilitate sensing of extracellular and mechanical stimuli into the cell, and a critical role for PC has been described for mesenchymal cells such as chondrocytes. However, nothing is known about the role of PC in airway smooth muscle cells (ASMCs) in the context of airway remodeling. We hypothesized that PC on ASMCs mediate cell contraction and are thus integral in the remodeling process. We found that PC are expressed on ASMCs in asthmatic lungs. Using pharmacological and genetic methods, we demonstrated that PC are necessary for ASMC contraction in a collagen gel three-dimensional model both in the absence of external stimulus and in response to the extracellular component hyaluronan. Mechanistically, we demonstrate that the effect of PC on ASMC contraction is, to a small extent, due to their effect on Sonic Hedgehog signaling and, to a larger extent, due to their effect on calcium influx and membrane depolarization. In conclusion, PC are necessary for the development of airway remodeling by mediating calcium flux and Sonic Hedgehog signaling.
Assuntos
Remodelação das Vias Aéreas/fisiologia , Brônquios/patologia , Cílios/patologia , Asma/metabolismo , Asma/patologia , Brônquios/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patologia , Células Cultivadas , Cílios/metabolismo , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Potenciais da Membrana/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Transdução de Sinais/fisiologiaRESUMO
Epithelial injury is often detected in lung allografts, however, its relation to rejection pathogenesis is unknown. We hypothesized that sterile epithelial injury can lead to alloimmune activation in the lung. We performed adoptive transfer of mismatched splenocytes into recombinant activating gene 1 (Rag1)-deficient mice to induce an alloimmune status and then exposed these mice to naphthalene to induce sterile epithelial injury. We evaluated lungs for presence of alloimmune lung injury, endoplasmic reticulum (ER) stress, and hyaluronan expression, examined the effect of ER stress induction on hyaluronan expression and lymphocyte trapping by bronchial epithelia in vitro, and examined airways from patients with bronchiolitis obliterans syndrome and normal controls histologically. We found that Rag1-deficient mice that received mismatched splenocytes and naphthalene injection displayed bronchial epithelial ER stress, peribronchial hyaluronan expression, and lymphocytic bronchitis. Bronchial epithelial ER stress led to the expression of lymphocyte-trapping hyaluronan cables in vitro. Blockade of hyaluronan binding ameliorated naphthalene-induced lymphocytic bronchitis. ER stress was present histologically in >40% of bronchial epithelia of BOS patients and associated with subepithelial hyaluronan deposition. We conclude that sterile bronchial epithelial injury in the context of alloimmunity can lead to sustained ER stress and promote allograft rejection through hyaluronan expression.
Assuntos
Bronquiolite Obliterante/metabolismo , Células Epiteliais/imunologia , Ácido Hialurônico/metabolismo , Linfócitos/imunologia , Aloenxertos/imunologia , Animais , Brônquios/patologia , Bronquiolite Obliterante/imunologia , Células Cultivadas , Técnicas de Cocultura , Estresse do Retículo Endoplasmático , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Humanos , Hialuronan Sintases , Transplante de Pulmão , Linfócitos/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mucosa Respiratória/patologia , Tenascina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Regulação para CimaRESUMO
Macrophages show high plasticity and result in heterogenic subpopulations or polarized states identified by specific cellular markers. These immune cells are typically characterized as pro-inflammatory, or classically activated M1, and anti-inflammatory, or alternatively activated M2. However, a more precise definition places them along a spectrum of activation where they may exhibit a number of pro- or anti-inflammatory roles. To understand M1-M2 dynamics in the context of a localized response and explore the results of different mathematical modeling approaches based on the same biology, we utilized two different modeling techniques, ordinary differential equation (ODE) modeling and agent-based modeling (ABM), to simulate the spectrum of macrophage activation to general pro- and anti-inflammatory stimuli on an individual and multi-cell level. The ODE model includes two hallmark pro- and anti-inflammatory signaling pathways and the ABM incorporates similar M1-M2 dynamics but in a spatio-temporal platform. Both models link molecular signaling with cellular-level dynamics. We then performed simulations with various initial conditions to replicate different experimental setups. Similar results were observed in both models after tuning to a common calibrating experiment. Comparing the two models' results sheds light on the important features of each modeling approach. When more data is available these features can be considered when choosing techniques to best fit the needs of the modeler and application.
Assuntos
Ativação de Macrófagos , Macrófagos , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Anti-Inflamatórios/metabolismo , Transdução de SinaisRESUMO
Limited treatments and a lack of appropriate animal models have spurred the study of scaffolds to mimic lung disease in vitro. Decellularized human lung and its application in extracellular matrix (ECM) hydrogels has advanced the development of these lung ECM models. Controlling the biochemical and mechanical properties of decellularized ECM hydrogels continues to be of interest due to inherent discrepancies of hydrogels when compared to their source tissue. To optimize the physiologic relevance of ECM hydrogel lung models without sacrificing the native composition we engineered a binary fabrication system to produce a Hybridgel composed of an ECM hydrogel reinforced with an ECM cryogel. Further, we compared the effect of ECM-altering disease on the properties of the gels using elastin poor Chronic Obstructive Pulmonary Disease (COPD) vs non-diseased (ND) human lung source tissue. Nanoindentation confirmed the significant loss of elasticity in hydrogels compared to that of ND human lung and further demonstrated the recovery of elastic moduli in ECM cryogels and Hybridgels. These findings were supported by similar observations in diseased tissue and gels. Successful cell encapsulation, distribution, cytotoxicity, and infiltration were observed and characterized via confocal microscopy. Cells were uniformly distributed throughout the Hybridgel and capable of survival for 7 days. Cell-laden ECM hybridgels were found to have elasticity similar to that of ND human lung. Compositional investigation into diseased and ND gels indicated the conservation of disease-specific elastin to collagen ratios. In brief, we have engineered a composited ECM hybridgel for the 3D study of cell-matrix interactions of varying lung disease states that optimizes the application of decellularized lung ECM materials to more closely mimic the human lung while conserving the compositional bioactivity of the native ECM. STATEMENT OF SIGNIFICANCE: The lack of an appropriate disease model for the study of chronic lung diseases continues to severely inhibit the advancement of treatments and preventions of these otherwise fatal illnesses due to the inability to recapture the biocomplexity of pathologic cell-ECM interactions. Engineering biomaterials that utilize decellularized lungs offers an opportunity to deconstruct, understand, and rebuild models that highlight and investigate how disease specific characteristics of the extracellular environment are involved in driving disease progression. We have advanced this space by designing a binary fabrication system for a ECM Hybridgel that retains properties from its source material required to observe native matrix interactions. This design simulates a 3D lung environment that is both mechanically elastic and compositionally relevant when derived from non-diseased tissue and pathologically diminished both mechanically and compositionally when derived from COPD tissue. Here we describe the ECM hybridgel as a model for the study of cell-ECM interactions involved in COPD.
Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/patologia , Pulmão/patologia , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Matriz Extracelular/química , Modelos Biológicos , Criogéis/química , AnimaisRESUMO
Pulmonary arterial hypertension has characteristic changes to the mechanical environment, extracellular matrix, and cellular proliferation. In order to develop a culture system to investigate extracellular matrix (ECM) compositional-dependent changes in pulmonary arterial hypertension, we decellularized and characterized protein and lipid profiles from healthy and Sugen-Chronic Hypoxia rat lungs. Significant changes in lipid profiles were observed in intact Sugen-Hypoxia lungs compared with healthy controls. Decellularized lung matrix retained lipids in measurable quantities in both healthy and Sugen-Chronic Hypoxia samples. Proteomics revealed significantly changed proteins associated with pulmonary arterial hypertension in the decellularized Sugen-Chronic Hypoxia lung ECM. We then investigated the potential role of healthy vs. Sugen-Chronic Hypoxia ECM with controlled substrate stiffness to determine if the ECM composition regulated endothelial cell morphology and phenotype. CD117+ rat lung endothelial cell clones were plated on the variable stiffness gels and cellular proliferation, morphology, and gene expression were quantified. Sugen-Chronic Hypoxia ECM on healthy stiffness gels produced significant changes in cellular gene expression levels of Bmp2, Col1α1, Col3α1 and Fn1. The signaling and cell morphology observed at low substrate stiffness suggests early changes to the ECM composition can initiate processes associated with disease progression. These data suggest that Sugen-Chronic Hypoxia ECM can be used to investigate cell-ECM interactions relevant to pulmonary arterial hypertension.
RESUMO
Treatments for acute respiratory distress syndrome are still unavailable, and the prevalence of the disease has only increased due to the COVID-19 pandemic. Mechanical ventilation regimens are still utilized to support declining lung function but also contribute to lung damage and increase the risk for bacterial infection. The anti-inflammatory and pro-regenerative abilities of mesenchymal stromal cells (MSCs) have shown to be a promising therapy for ARDS. We propose to utilize the regenerative effects of MSCs and the extracellular matrix (ECM) in a nanoparticle. Our mouse MSC (MMSC) ECM nanoparticles were characterized using size, zeta potential, and mass spectrometry to evaluate their potential as pro-regenerative and antimicrobial treatments. The nanoparticles had an average size of 273.4 nm (±25.6) and possessed a negative zeta potential, allowing them to surpass defenses and reach the distal regions of the lung. It was found that the MMSC ECM nanoparticles are biocompatible with mouse lung epithelial cells and MMSCs, increasing the wound healing rate of human lung fibroblasts while also inhibiting the growth of Pseudomonas aeruginosa, a common lung pathogen. Our MMSC ECM nanoparticles display characteristics of healing injured lungs while preventing bacterial infection, which can increase recovery time.
RESUMO
Epithelial injury is a central event in the pathogenesis of many inflammatory and fibrotic lung diseases like acute respiratory distress syndrome, pulmonary fibrosis, and iatrogenic lung injury. Mechanical stress is an often underappreciated contributor to lung epithelial injury. Following injury, differentiated epithelia can assume a myofibroblast phenotype in a process termed epithelial to mesenchymal transition (EMT), which contributes to aberrant wound healing and fibrosis. We demonstrate that cyclic mechanical stretch induces EMT in alveolar type II epithelial cells, associated with increased expression of low molecular mass hyaluronan (sHA). We show that sHA is sufficient for induction of EMT in statically cultured alveolar type II epithelial cells and necessary for EMT during cell stretch. Furthermore, stretch-induced EMT requires the innate immune adaptor molecule MyD88. We examined the Wnt/ß-catenin pathway, which is known to mediate EMT. The Wnt target gene Wnt-inducible signaling protein 1 (wisp-1) is significantly up-regulated in stretched cells in hyaluronan- and MyD88-dependent fashion, and blockade of WISP-1 prevents EMT in stretched cells. In conclusion, we show for the first time that innate immunity transduces mechanical stress responses through the matrix component hyaluronan, and activation of the Wnt/ß-catenin pathway.
Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Ácido Hialurônico/farmacologia , Imunidade Inata/fisiologia , Alvéolos Pulmonares/metabolismo , Mucosa Respiratória/metabolismo , Estresse Fisiológico/fisiologia , Animais , Proteínas de Sinalização Intercelular CCN , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ácido Hialurônico/imunologia , Ácido Hialurônico/metabolismo , Imunidade Inata/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/imunologia , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/imunologia , Mucosa Respiratória/citologia , Estresse Fisiológico/efeitos dos fármacos , Proteínas Wnt/genética , Proteínas Wnt/imunologia , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/imunologia , beta Catenina/metabolismoRESUMO
Pulmonary arterial hypertension (PAH) is a progressive, devastating disease, and its main histological manifestation is an occlusive pulmonary arteriopathy. One important functional component of PAH is aberrant endothelial cell (EC) function including apoptosis-resistance, unchecked proliferation, and impaired migration. The mechanisms leading to and maintaining physiologic and aberrant EC function are not fully understood. Here, we tested the hypothesis that in PAH, ECs have increased expression of the transmembrane protein integrin-ß5, which contributes to migration and survival under physiologic and pathological conditions, but also to endothelial-to-mesenchymal transition (EnMT). We found that elevated integrin-ß5 expression in pulmonary artery lesions and lung tissue from PAH patients and rats with PH induced by chronic hypoxia and injection of CD117+ rat lung EC clones. These EC clones exhibited elevated expression of integrin-ß5 and its heterodimerization partner integrin-αν and showed accelerated barrier formation. Inhibition of integrin-ανß5 in vitro partially blocked transforming growth factor (TGF)-ß1-induced EnMT gene expression in rat lung control ECs and less in rat lung EC clones and human lung microvascular ECs. Inhibition of integrin-ανß5 promoted endothelial dysfunction as shown by reduced migration in a scratch assay and increased apoptosis in synergism with TGF-ß1. In vivo, blocking of integrin-ανß5 exaggerated PH induced by chronic hypoxia and CD117+ EC clones in rats. In summary, we found a role for integrin-ανß5 in lung endothelial survival and migration, but also a partial contribution to TGF-ß1-induced EnMT gene expression. Our results suggest that integrin-ανß5 is required for physiologic function of ECs and lung vascular homeostasis.
RESUMO
Angiogenesis, the formation of new vessels, occurs in both developmental and pathological contexts. Prior research has investigated vessel formation to identify cellular phenotypes and dynamics associated with angiogenic disease. One major family of proteins involved in angiogenesis are the Rho GTPases, which govern function related to cellular elongation, migration, and proliferation. Using a mechanochemical model coupling Rho GTPase activity and cellular and intercellular mechanics, we investigate the role of cellular mitosis on sprouting angiogenesis. Mitosis-GTPase synchronization was not a strong predictor of GTPase and thus vessel signaling instability, whereas the location of mitotic events was predicted to alter GTPase cycling instabilities. Our model predicts that middle stalk cells undergoing mitosis introduce irregular dynamics in GTPase cycling and may provide a source of aberrant angiogenesis. We also find that cellular and junctional tension exhibit spatial heterogeneity through the vessel, and that tension feedback, specifically in stalk cells, tends to increase the maximum forces generated in the vessel.
Assuntos
Vasos Sanguíneos/citologia , Vasos Sanguíneos/fisiologia , Mitose , Modelos Biológicos , Neovascularização Fisiológica , Fenômenos Biomecânicos , Retroalimentação Fisiológica , GTP Fosfo-Hidrolases/metabolismoRESUMO
Respiratory infections, such as the novel coronavirus (SARS-COV-2) and other lung injuries, damage the pulmonary epithelium. In the most severe cases this leads to acute respiratory distress syndrome (ARDS). Due to respiratory failure associated with ARDS, the clinical intervention is the use of mechanical ventilation. Despite the benefits of mechanical ventilators, prolonged or misuse of these ventilators may lead to ventilation-associated/ventilation-induced lung injury (VILI). Damage caused to epithelial cells within the alveoli can lead to various types of complications and increased mortality rates. A key component of the immune response is recruitment of macrophages, immune cells that differentiate into phenotypes with unique pro- and/or anti-inflammatory roles based on the surrounding environment. An imbalance in pro- and anti-inflammatory responses can have deleterious effects on the individual's health. To gain a greater understanding of the mechanisms of the immune response to VILI and post-ventilation outcomes, we develop a mathematical model of interactions between the immune system and site of damage while accounting for macrophage polarization. Through Latin hypercube sampling we generate a virtual cohort of patients with biologically feasible dynamics. We use a variety of methods to analyze the results, including a random forest decision tree algorithm and parameter sensitivity with eFAST. Analysis shows that parameters and properties of transients related to epithelial repair and M1 activation and de-activation best predicted outcome. Using this new information, we hypothesize inter-ventions and use these treatment strategies to modulate damage in select virtual cases.
RESUMO
Hydrogels derived from decellularized lungs are promising materials for tissue engineering in the development of clinical therapies and for modeling the lung extracellular matrix (ECM) in vitro. Characterizing and controlling the resulting physical, biochemical, mechanical, and biologic properties of decellularized ECM (dECM) after enzymatic solubilization and gelation are thus of key interest. As the role of enzymatic pepsin digestion in effecting these properties has been understudied, we investigated the digestion time-dependency on key parameters of the resulting ECM hydrogel. Using resolubilized, homogenized decellularized pig lung dECM as a model system, significant time-dependent changes in protein concentration, turbidity, and gelation potential were found to occur between the 4 and 24 h digestion time points, and plateauing with longer digestion times. These results correlated with qualitative scanning electron microscopy images and quantitative analysis of hydrogel interconnectivity and average fiber diameter. Interestingly, the time-dependent changes in the storage modulus tracked with the hydrogel interconnectivity results, while the Young's modulus values were more closely related to average fiber size at each time point. The structural and biochemical alterations correlated with significant changes in metabolic activity of several representative lung cells seeded onto the hydrogels with progressive decreases in cell viability and alterations in morphology observed in cells cultured on hydrogels produced with dECM digested for >12 and up to 72 h of digestion. These studies demonstrate that 12 h pepsin digest of pig lung dECM provides an optimal balance between desirable physical ECM hydrogel properties and effects on lung cell behaviors.
Assuntos
Matriz Extracelular/química , Hidrogéis/química , Pulmão/química , Pepsina A/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Pulmão/metabolismo , SuínosRESUMO
Background: In neonatal respiratory distress syndrome, breathing support and surfactant therapy are commonly used to enable the alveoli to expand. Surfactants are typically delivered through liquid instillation. However, liquid instillation does not specifically target the small airways. We have developed an excipient enhanced growth (EEG) powder aerosol formulation using Survanta®. Methods: EEG Survanta powder aerosol was delivered using a novel dry powder inhaler via tracheal insufflation to surfactant depleted rats at nominal doses of 3, 5, 10, and 20 mg of powder containing 0.61, 0.97, 1.73, and 3.46 mg of phospholipids (PL), whereas liquid Survanta was delivered via syringe instillation at doses of 2 and 4 mL/kg containing 18.6 and 34 mg of PL. Ventilation mechanics were measured before and after depletion, and after treatment. We hypothesized that EEG Survanta powder aerosol would improve lung mechanics compared with instilled liquid Survanta in surfactant depleted rats. Results and Conclusion: EEG Survanta powder aerosol at a dose of 0.61 mg PL significantly improved lung compliance and elastance compared with the liquid Survanta at a dose of 18.6 mg, which represents improved primary efficacy of the aerosol at a 30-fold lower dose of PL. There was no significant difference in white blood cell count of the lavage from the EEG Survanta group compared with liquid Survanta. These results provide an in vivo proof-of-concept for EEG Survanta powder aerosol as a promising method of surfactant replacement therapy.