RESUMO
Obesity- or diabetes-induced oxidative stress is discussed as a major risk factor for DNA damage. Vitamin E and many polyphenols exhibit antioxidative activities with consequences on epigenetic regulation of inflammation and DNA repair. The present study investigated the counteraction of oxidative stress by vitamin E in the colorectal cancer cell line Caco-2 under normal (1 g/l) and high (4.5 g/l) glucose cell culture condition. Malondialdehyde (MDA) as a surrogate marker of lipid peroxidation and reactive oxygen species (ROS) was analyzed. Gene expression and promoter methylation of the DNA repair gene MutL homolog 1 (MLH1) and the DNA methyltransferase 1 (DNMT1) as well as global methylation by LINE-1 were investigated. Results revealed a dose-dependent counteracting effect of vitamin E on H2O2-induced oxidative stress. Thereby, 10 µM vitamin E proved to be more efficient than did 50 µM in reducing MDA. Further, an induction of MLH1 and DNMT1 gene expression was noticed, accompanied by an increase in global methylation. Whether LINE-1 hypomethylation is a cause or effect of oxidative stress is still unclear. In conclusion, supplementation of exogenous antioxidants like vitamin E in vitro exhibits beneficial effects concerning oxidative stress as well as epigenetic regulation involved in DNA repair.