Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930834

RESUMO

Cytoglobin (Cygb) was discovered as a novel type of globin that is expressed in mammals; however, its functions remain uncertain. While Cygb protects against oxidant stress, the basis for this is unclear, and the effect of Cygb on superoxide metabolism is unknown. From dose-dependent studies of the effect of Cygb on superoxide catabolism, we identify that Cygb has potent superoxide dismutase (SOD) function. Initial assays using cytochrome c showed that Cygb exhibits a high rate of superoxide dismutation on the order of 108 M-1 ⋅ s-1 Spin-trapping studies also demonstrated that the rate of Cygb-mediated superoxide dismutation (1.6 × 108 M-1 ⋅ s-1) was only ∼10-fold less than Cu,Zn-SOD. Stopped-flow experiments confirmed that Cygb rapidly dismutates superoxide with rates within an order of magnitude of Cu,Zn-SOD or Mn-SOD. The SOD function of Cygb was inhibited by cyanide and CO that coordinate to Fe3+-Cygb and Fe2+-Cygb, respectively, suggesting that dismutation involves iron redox cycling, and this was confirmed by spectrophotometric titrations. In control smooth-muscle cells and cells with siRNA-mediated Cygb knockdown subjected to extracellular superoxide stress from xanthine/xanthine oxidase or intracellular superoxide stress triggered by the uncoupler, menadione, Cygb had a prominent role in superoxide metabolism and protected against superoxide-mediated death. Similar experiments in vessels showed higher levels of superoxide in Cygb-/- mice than wild type. Thus, Cygb has potent SOD function and can rapidly dismutate superoxide in cells, conferring protection against oxidant injury. In view of its ubiquitous cellular expression at micromolar concentrations in smooth-muscle and other cells, Cygb can play an important role in cellular superoxide metabolism.


Assuntos
Citoglobina , Superóxido Dismutase , Animais , Linhagem Celular , Citoglobina/química , Citoglobina/genética , Citoglobina/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Masculino , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
2.
J Biol Chem ; 296: 100196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334890

RESUMO

In smooth muscle, cytoglobin (Cygb) functions as a potent nitric oxide (NO) dioxygenase and regulates NO metabolism and vascular tone. Major questions remain regarding which cellular reducing systems regulate Cygb-mediated NO metabolism. To better define the Cygb-mediated NO dioxygenation process in vascular smooth muscle cells (SMCs), and the requisite reducing systems that regulate cellular NO decay, we assessed the intracellular concentrations of Cygb and its putative reducing systems and examined their roles in the process of NO decay. Cygb and the reducing systems, cytochrome b5 (B5)/cytochrome b5 reductase (B5R) and cytochrome P450 reductase (CPR) were measured in aortic SMCs. Intracellular Cygb concentration was estimated as 3.5 µM, while B5R, B5, and CPR were 0.88, 0.38, and 0.15 µM, respectively. NO decay in SMCs was measured following bolus addition of NO to air-equilibrated cells. siRNA-mediated knockdown experiments indicated that âˆ¼78% of NO metabolism in SMCs is Cygb-dependent. Of this, ∼87% was B5R- and B5-dependent. CPR knockdown resulted in a small decrease in the NO dioxygenation rate (VNO), while depletion of ascorbate had no effect. Kinetic analysis of VNO for the B5/B5R/Cygb system with variation of B5 or B5R concentrations from their SMC levels showed that VNO exhibits apparent Michaelis-Menten behavior for B5 and B5R. In contrast, linear variation was seen with change in Cygb concentration. Overall, B5/B5R was demonstrated to be the major reducing system supporting Cygb-mediated NO metabolism in SMCs with changes in cellular B5/B5R levels modulating the process of NO decay.


Assuntos
Citocromos b5/metabolismo , Citoglobina/metabolismo , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Oxigenases/metabolismo , Animais , Fenômenos Bioquímicos , Células Cultivadas , Humanos , Cinética , Camundongos
3.
Am J Physiol Heart Circ Physiol ; 319(1): H51-H65, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412791

RESUMO

Although there is a strong association between cigarette smoking exposure (CSE) and vascular endothelial dysfunction (VED), the underlying mechanisms by which CSE triggers VED remain unclear. Therefore, studies were performed to define these mechanisms using a chronic mouse model of cigarette smoking (CS)-induced cardiovascular disease mirroring that in humans. C57BL/6 male mice were subjected to CSE for up to 48 wk. CSE impaired acetylcholine (ACh)-induced relaxation of aortic and mesenteric segments and triggered hypertension, with mean arterial blood pressure at 32 and 48 wk of exposure of 122 ± 6 and 135 ± 5 mmHg compared with 99 ± 4 and 102 ± 6 mmHg, respectively, in air-exposed mice. CSE led to monocyte activation with superoxide generation in blood exiting the pulmonary circulation. Macrophage infiltration with concomitant increase in NADPH oxidase subunits p22phox and gp91phox was seen in aortas of CS-exposed mice at 16 wk, with further increase out to 48 wk. Associated with this, increased superoxide production was detected that decreased with Nox inhibition. Tetrahydrobiopterin was progressively depleted in CS-exposed mice but not in air-exposed controls, resulting in endothelial nitric oxide synthase (eNOS) uncoupling and secondary superoxide generation. CSE led to a time-dependent decrease in eNOS and Akt expression and phosphorylation. Overall, CSE induces vascular monocyte infiltration with increased NADPH oxidase-mediated reactive oxygen species generation and depletes the eNOS cofactor tetrahydrobiopterin, uncoupling eNOS and triggering a vicious cycle of oxidative stress with VED and hypertension. Our study provides important insights toward understanding the process by which smoking contributes to the genesis of cardiovascular disease and identifies biomarkers predictive of disease.NEW & NOTEWORTHY In a chronic model of smoking-induced cardiovascular disease, we define underlying mechanisms of smoking-induced vascular endothelial dysfunction (VED). Smoking exposure triggered VED and hypertension and led to vascular macrophage infiltration with concomitant increase in superoxide and NADPH oxidase levels as early as 16 wk of exposure. This oxidative stress was accompanied by tetrahydrobiopterin depletion, resulting in endothelial nitric oxide synthase uncoupling with further superoxide generation triggering a vicious cycle of oxidative stress and VED.


Assuntos
Endotélio Vascular/metabolismo , Leucócitos/metabolismo , Estresse Oxidativo , Lesão por Inalação de Fumaça/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Vasodilatação , Animais , Aorta/metabolismo , Aorta/fisiopatologia , Pressão Sanguínea , Endotélio Vascular/fisiopatologia , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lesão por Inalação de Fumaça/etiologia , Lesão por Inalação de Fumaça/fisiopatologia , Superóxidos/metabolismo
4.
Am J Physiol Cell Physiol ; 314(3): C297-C309, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187364

RESUMO

The NAD(P)+-hydrolyzing enzyme CD38 is activated in the heart during the process of ischemia and reperfusion, triggering NAD(P)(H) depletion. However, the presence and role of CD38 in the major cell types of the heart are unknown. Therefore, we characterize the presence and function of CD38 in cardiac myocytes, endothelial cells, and fibroblasts. To comprehensively evaluate CD38 in these cells, we measured gene transcription via mRNA, as well as protein expression and enzymatic activity. Endothelial cells strongly expressed CD38, while only low expression was present in cardiac myocytes with intermediate levels in fibroblasts. In view of this high level expression in endothelial cells and the proposed role of CD38 in the pathogenesis of endothelial dysfunction, endothelial cells were subjected to hypoxia-reoxygenation to characterize the effect of this stress on CD38 expression and activity. An activity-based CD38 imaging method and CD38 activity assays were used to characterize CD38 activity in normoxic and hypoxic-reoxygenated endothelial cells, with marked CD38 activation seen following hypoxia-reoxygenation. To test the impact of hypoxia-reoxygenation-induced CD38 activation on endothelial cells, NAD(P)(H) levels and endothelial nitric oxide synthase (eNOS)-derived NO production were measured. Marked NADP(H) depletion with loss of NO and increase in superoxide production occurred following hypoxia-reoxygenation that was prevented by CD38 inhibition or knockdown. Thus, endothelial cells have high expression of CD38 which is activated by hypoxia-reoxygenation triggering CD38-mediated NADP(H) depletion with loss of eNOS-mediated NO generation and increased eNOS uncoupling. This demonstrates the importance of CD38 in the endothelium and explains the basis by which CD38 triggers post-ischemic endothelial dysfunction.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase/metabolismo , Vasos Coronários/enzimologia , Células Endoteliais/enzimologia , Glicoproteínas de Membrana/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Reperfusão Miocárdica/efeitos adversos , NADP/metabolismo , ADP-Ribosil Ciclase 1/deficiência , ADP-Ribosil Ciclase 1/genética , Animais , Hipóxia Celular , Vasos Coronários/patologia , Células Endoteliais/patologia , Ativação Enzimática , Fibroblastos/metabolismo , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos/enzimologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Superóxidos/metabolismo , Fatores de Tempo
5.
Proc Natl Acad Sci U S A ; 112(37): 11648-53, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26297248

RESUMO

In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP(+), coincided with formation of 2'-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Endotélio Vascular/metabolismo , Isquemia/patologia , NADP/metabolismo , Animais , Biopterinas/análogos & derivados , Biopterinas/química , Doença da Artéria Coronariana/patologia , Espectroscopia de Ressonância de Spin Eletrônica , Endotélio Vascular/patologia , Coração/fisiologia , Hipóxia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/química , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão
6.
J Pharmacol Exp Ther ; 361(1): 99-108, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28108596

RESUMO

We recently showed that ischemia/reperfusion (I/R) of the heart causes CD38 activation with resultant depletion of the cardiac NADP(H) pool, which is most marked in the endothelium. This NADP(H) depletion was shown to limit the production of nitric oxide by endothelial nitric oxide synthase (eNOS), which requires NADPH for nitric oxide production, resulting in greatly altered endothelial function. Therefore, intervention with CD38 inhibitors could reverse postischemic eNOS-mediated endothelial dysfunction. Here, we evaluated the potency of the CD38 inhibitor luteolinidin, an anthocyanidin, at blocking CD38 activity and preserving endothelial and myocardial function in the postischemic heart. Initially, we characterized luteolinidin as a CD38 inhibitor in vitro to determine its potency and mechanism of inhibition. We then tested luteolinidin in the ex vivo isolated heart model, where we determined luteolinidin uptake with aqueous and liposomal delivery methods. Optimal delivery methods were then further tested to determine the effect of luteolinidin on postischemic NAD(P)(H) and tetrahydrobiopterin levels. Finally, through nitric oxide synthase-dependent coronary flow and left ventricular functional measurements, we evaluated the efficacy of luteolinidin to protect vascular and contractile function, respectively, after I/R. With enhanced postischemic preservation of NADPH and tetrahydrobiopterin, there was a dose-dependent effect of luteolinidin on increasing recovery of endothelium-dependent vasodilatory function, as well as enhancing the recovery of left ventricular contractile function with increased myocardial salvage. Thus, luteolinidin is a potent CD38 inhibitor that protects the heart against I/R injury with preservation of eNOS function and prevention of endothelial dysfunction.


Assuntos
ADP-Ribosil Ciclase 1/antagonistas & inibidores , ADP-Ribosil Ciclase 1/metabolismo , Antocianinas/uso terapêutico , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/metabolismo , NADP/metabolismo , Animais , Antocianinas/farmacologia , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Relação Dose-Resposta a Droga , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo
7.
Bioorg Med Chem Lett ; 26(23): 5685-5688, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836400

RESUMO

EPR oximetry with the use of trityl radicals can enable sensitive O2 measurement in biological cells and tissues. However, in vitro cellular and in vivo biological applications are limited by rapid trityl probe degradation or biological clearance and the need to enhance probe O2 sensitivity. We synthesized novel perfluorocarbon (PFC) emulsions, ∼200nm droplet size, containing esterified perchlorinated triphenyl methyl (PTM) radicals dispersed in physiological aqueous buffers. These formulations exhibit excellent EPR signal stability, over 20-fold greater than free PTM probes, with high oxygen sensitivity ∼17mG/mmHg enabling pO2 measurement in aqueous solutions or cell suspensions with sensitivity >0.5mmHg. Thus, PFC-PTM probes hold great promise to enable combined O2 delivery and sensing as needed to restore or enhance tissue oxygenation in disease.


Assuntos
Emulsões/química , Fluorocarbonos/química , Oximetria/métodos , Oxigênio/análise , Linhagem Celular , Espectroscopia de Ressonância de Spin Eletrônica , Esterificação , Humanos
8.
Nature ; 468(7327): 1115-8, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21179168

RESUMO

Endothelial nitric oxide synthase (eNOS) is critical in the regulation of vascular function, and can generate both nitric oxide (NO) and superoxide (O(2)(•-)), which are key mediators of cellular signalling. In the presence of Ca(2+)/calmodulin, eNOS produces NO, endothelial-derived relaxing factor, from l-arginine (l-Arg) by means of electron transfer from NADPH through a flavin containing reductase domain to oxygen bound at the haem of an oxygenase domain, which also contains binding sites for tetrahydrobiopterin (BH(4)) and l-Arg. In the absence of BH(4), NO synthesis is abrogated and instead O(2)(•-) is generated. While NOS dysfunction occurs in diseases with redox stress, BH(4) repletion only partly restores NOS activity and NOS-dependent vasodilation. This suggests that there is an as yet unidentified redox-regulated mechanism controlling NOS function. Protein thiols can undergo S-glutathionylation, a reversible protein modification involved in cellular signalling and adaptation. Under oxidative stress, S-glutathionylation occurs through thiol-disulphide exchange with oxidized glutathione or reaction of oxidant-induced protein thiyl radicals with reduced glutathione. Cysteine residues are critical for the maintenance of eNOS function; we therefore speculated that oxidative stress could alter eNOS activity through S-glutathionylation. Here we show that S-glutathionylation of eNOS reversibly decreases NOS activity with an increase in O(2)(•-) generation primarily from the reductase, in which two highly conserved cysteine residues are identified as sites of S-glutathionylation and found to be critical for redox-regulation of eNOS function. We show that eNOS S-glutathionylation in endothelial cells, with loss of NO and gain of O(2)(•-) generation, is associated with impaired endothelium-dependent vasodilation. In hypertensive vessels, eNOS S-glutathionylation is increased with impaired endothelium-dependent vasodilation that is restored by thiol-specific reducing agents, which reverse this S-glutathionylation. Thus, S-glutathionylation of eNOS is a pivotal switch providing redox regulation of cellular signalling, endothelial function and vascular tone.


Assuntos
Endotélio Vascular/metabolismo , Glutationa/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Bovinos , Células Cultivadas , Ditiotreitol/farmacologia , Células Endoteliais/metabolismo , Humanos , Masculino , Mercaptoetanol/farmacologia , Mutação , Óxido Nítrico Sintase Tipo III/genética , Oxirredução , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Substâncias Redutoras/farmacologia , Transdução de Sinais , Vasodilatação/fisiologia
9.
Biochemistry ; 53(22): 3679-88, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24758136

RESUMO

Ischemia-reperfusion injury is accompanied by endothelial hypoxia and reoxygenation that trigger oxidative stress with enhanced superoxide generation and diminished nitric oxide (NO) production leading to endothelial dysfunction. Oxidative depletion of the endothelial NO synthase (eNOS) cofactor tetrahydrobiopterin can trigger eNOS uncoupling, in which the enzyme generates superoxide rather than NO. Recently, it has also been shown that oxidative stress can induce eNOS S-glutathionylation at critical cysteine residues of the reductase site that serves as a redox switch to control eNOS coupling. While superoxide can deplete tetrahydrobiopterin and induce eNOS S-glutathionylation, the extent of and interaction between these processes in the pathogenesis of eNOS dysfunction in endothelial cells following hypoxia and reoxygenation remain unknown. Therefore, studies were performed on endothelial cells subjected to hypoxia and reoxygenation to determine the severity of eNOS uncoupling and the role of cofactor depletion and S-glutathionylation in this process. Hypoxia and reoxygenation of aortic endothelial cells triggered xanthine oxidase-mediated superoxide generation, causing both tetrahydrobiopterin depletion and S-glutathionylation with resultant eNOS uncoupling. Replenishing cells with tetrahydrobiopterin along with increasing intracellular levels of glutathione greatly preserved eNOS activity after hypoxia and reoxygenation, while targeting either mechanism alone only partially ameliorated the decrease in NO. Endothelial oxidative stress, secondary to hypoxia and reoxygenation, uncoupled eNOS with an altered ratio of oxidized to reduced glutathione inducing eNOS S-glutathionylation. These mechanisms triggered by oxidative stress combine to cause eNOS dysfunction with shift of the enzyme from NO to superoxide production. Thus, in endothelial reoxygenation injury, normalization of both tetrahydrobiopterin levels and the glutathione pool are needed for maximal restoration of eNOS function and NO generation.


Assuntos
Biopterinas/análogos & derivados , Células Endoteliais/metabolismo , Endotélio Vascular/química , Glutationa/metabolismo , Oxigênio/metabolismo , Animais , Biopterinas/deficiência , Bovinos , Hipóxia Celular/fisiologia , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Indução Enzimática/fisiologia , Ligação Proteica/fisiologia
10.
Arch Biochem Biophys ; 554: 1-5, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24780244

RESUMO

Cytoglobin (Cygb) plays a role in regulating vasodilation in response to changes in local oxygen concentration by altering the rate of nitric oxide (NO) metabolism. Because the reduction of Cygb(Fe(3+)) by a reductant is the control step for Cygb-mediated NO metabolism, we examined the effects of temperature, pH, and heme ligands on the Cygb(Fe(3+)) reduction by ascorbate (Asc) under anaerobic conditions. The standard enthalpy of Cygb(Fe(3+)) reduction by Asc was determined to be 42.4 ± 3.1 kJ/mol. The rate of Cygb(Fe(3+)) reduction increased ~6% per °C when temperature varied from 35°C to 40°C. The yield and the rate of Cygb(Fe(3+)) reduction significantly increases with pH (2-3 times per pH unit), paralleling the formation of the Asc ion (A(2-)) and the increased stability of reduced state of heme iron at high pH values. Heme ligand cyanide (CN(-)) decreased the yield and the rate of Cygb(Fe(3+)) reduction, but ligands CO and NO allowed the process of Cygb(Fe(3+)) reduction to continue to completion. Critical information is provided for modeling and prediction of the process of Cygb-mediated NO metabolism in vessels in a range of temperature and pH values.


Assuntos
Globinas/química , Globinas/metabolismo , Animais , Ácido Ascórbico/metabolismo , Citoglobina , Compostos Férricos/química , Compostos Férricos/metabolismo , Heme/química , Heme/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Óxido Nítrico/metabolismo , Oxirredução , Espectrofotometria , Temperatura
11.
Biochemistry ; 52(38): 6712-23, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23977830

RESUMO

S-Glutathionylation is a redox-regulated modification that uncouples endothelial nitric oxide synthase (eNOS), switching its function from nitric oxide (NO) synthesis to (•)O2(-) generation, and serves to regulate vascular function. While in vitro or in vivo eNOS S-glutathionylation with modification of Cys689 and Cys908 of its reductase domain is triggered by high levels of glutathione disulfide (GSSG) or oxidative thiyl radical formation, it remains unclear how this process may be reversed. Glutaredoxin-1 (Grx1), a cytosolic and glutathione-dependent enzyme, can reverse protein S-glutathionylation; however, its role in regulating eNOS S-glutathionylation remains unknown. We demonstrate that Grx1 in the presence of glutathione (GSH) (1 mM) reverses GSSG-mediated eNOS S-glutathionylation with restoration of NO synthase activity. Because Grx1 also catalyzes protein S-glutathionylation with an increased [GSSG]/[GSH] ratio, we measured its effect on eNOS S-glutathionylation when the [GSSG]/[GSH] ratio was >0.2, which can occur in cells and tissues under oxidative stress, and observed an increased level of eNOS S-glutathionylation with a marked decrease in eNOS activity without uncoupling. This eNOS S-glutathionylation was reversed with a decrease in the [GSSG]/[GSH] ratio to <0.1. Liquid chromatography and tandem mass spectrometry identified a new site of eNOS S-glutathionylation by Grx1 at Cys382, on the surface of the oxygenase domain, without modification of Cys689 or Cys908, each of which is buried within the reductase. Furthermore, Grx1 was demonstrated to be a protein partner of eNOS in vitro and in normal endothelial cells, supporting its role in eNOS redox regulation. In endothelial cells, Grx1 inhibition or gene silencing increased the level of eNOS S-glutathionylation and decreased the level of cellular NO generation. Thus, Grx1 can exert an important role in the redox regulation of eNOS in cells.


Assuntos
Glutarredoxinas/metabolismo , Glutationa/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Cádmio/farmacologia , Bovinos , Células Cultivadas , Cisteína/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Inativação Gênica , Glutarredoxinas/antagonistas & inibidores , Dissulfeto de Glutationa/metabolismo , Humanos , Óxido Nítrico Sintase Tipo III/genética , Oxirredução , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína
12.
J Biol Chem ; 287(43): 36623-33, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22896706

RESUMO

Cytoglobin (Cygb) is a recently discovered cytoplasmic heme-binding globin. Although multiple hemeproteins have been reported to function as nitrite reductases in mammalian cells, it is unknown whether Cygb can also reduce nitrite to nitric oxide (NO). The mechanism, magnitude, and quantitative importance of Cygb-mediated nitrite reduction in tissues have not been reported. To investigate this pathway and its quantitative importance, EPR spectroscopy, spectrophotometric measurements, and chemiluminescence NO analyzer studies were performed. Under anaerobic conditions, mixing nitrite with ferrous-Cygb triggered NO formation that was trapped and detected using EPR spin trapping. Spectrophotometric studies revealed that nitrite binding to ferrous-Cygb is followed by formation of ferric-Cygb and NO. The kinetics and magnitude of Cygb-mediated NO formation were characterized. It was observed that Cygb-mediated NO generation increased linearly with the increase of nitrite concentration under anaerobic conditions. This Cygb-mediated NO production greatly increased with acidosis and near-anoxia as occur in ischemic conditions. With the addition of nitrite, soluble guanylyl cyclase activation was significantly higher in normal smooth muscle cells compared with Cygb knocked down cells with Cygb accounting for ∼40% of the activation in control cells and ∼60% in cells subjected to hypoxia for 48 h. Overall, these studies show that Cygb-mediated nitrite reduction can play an important role in NO generation and soluble guanylyl cyclase activation under hypoxic conditions, with this process regulated by pH, oxygen tension, nitrite concentration, and the redox state of the cells.


Assuntos
Globinas/metabolismo , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Anaerobiose , Hipóxia Celular/fisiologia , Células Cultivadas , Citoglobina , Espectroscopia de Ressonância de Spin Eletrônica , Globinas/química , Globinas/genética , Guanilato Ciclase/química , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Medições Luminescentes , Miócitos de Músculo Liso/citologia , Óxido Nítrico/química , Nitritos/química , Oxirredução , Oxigênio/química , Oxigênio/metabolismo
13.
J Org Chem ; 78(4): 1371-6, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23343531

RESUMO

In this work, we have developed a new class of dendritic TAM radicals (TG, TdG, and dTdG) through a convergent method based on the TAM core CT-03 or its deuterated analogue dCT-03 and trifurcated Newkome-type monomer. Among these radicals, dTdG exhibits the best EPR properties with sharpest EPR singlet and highest O(2) sensitivity due to deuteration of both the ester linker groups and the TAM core CT-03. Like the previous dendritic TAM radicals, these new compounds also show extremely high stability toward various reactive species owing to the dendritic encapsulation. The highly charged nature of these molecules resulting from nine carboxylate groups prevents concentration-dependent EPR line broadening at physiological pH. Furthermore, we demonstrate that these TAM radicals can be easily derivatized (e.g., PEGylation) at the nine carboxylate groups and the resulting PEGylated analogue dTdG-PEG completely inhibits the albumin binding, thereby enhancing suitability for in vivo applications. These new dendritic TAM radicals show great potential for in vivo EPR oximetric applications and provide insights on approaches to develop improved and targeted EPR oximetric probes for biomedical applications.


Assuntos
Deutério/química , Éteres/química , Oxigênio/química , Polietilenoglicóis/química , Compostos de Tritil/química , Espectroscopia de Ressonância de Spin Eletrônica , Ésteres , Água
14.
J Invest Dermatol ; 143(10): 2052-2064.e5, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37044260

RESUMO

Repair of epithelial defect is complicated by infection and related metabolites. Pyocyanin (PYO) is one such metabolite that is secreted during Pseudomonas aeruginosa infection. Keratinocyte (KC) migration is required for the closure of skin epithelial defects. This work sought to understand PYO-KC interaction and its significance in tissue repair. Stable Isotope Labeling by Amino acids in Cell culture proteomics identified mitochondrial dysfunction as the top pathway responsive to PYO exposure in human KCs. Consistently, functional studies showed mitochondrial stress, depletion of reducing equivalents, and adenosine triphosphate. Strikingly, despite all stated earlier, PYO markedly accelerated KC migration. Investigation of underlying mechanisms revealed, to our knowledge, a previously unreported function of keratin 6A in KCs. Keratin 6A was PYO inducible and accelerated closure of epithelial defect. Acceleration of closure was associated with poor quality healing, including compromised expression of apical junction proteins. This work recognizes keratin 6A for its role in enhancing KC migration under conditions of threat posed by PYO. Qualitatively deficient junctional proteins under conditions of defensive acceleration of KC migration explain why an infected wound close with deficient skin barrier function as previously reported.


Assuntos
Queratina-6 , Piocianina , Humanos , Piocianina/química , Piocianina/metabolismo , Queratina-6/metabolismo , Pele/metabolismo , Mitocôndrias/metabolismo
15.
Biochemistry ; 51(25): 5072-82, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22577939

RESUMO

The endogenous vasodilator nitric oxide (NO) is metabolized in tissues in an O(2)-dependent manner. This regulates NO levels in the vascular wall; however, the underlying molecular basis of this O(2)-dependent NO consumption remains unclear. While cytoglobin (Cygb) was discovered a decade ago, its physiological function remains uncertain. Cygb is expressed in the vascular wall and can consume NO in an O(2)-dependent manner. Therefore, we characterize the process of the O(2)-dependent consumption of NO by Cygb in the presence of the cellular reductants and reducing systems ascorbate (Asc) and cytochrome P(450) reductase (CPR), measure rate constants of Cygb reduction by Asc and CPR, and propose a reaction mechanism and derive a related kinetic model for this O(2)-dependent NO consumption involving Cygb(Fe(3+)) as the main intermediate reduced back to ferrous Cygb by cellular reductants. This kinetic model expresses the relationship between the rate of O(2)-dependent consumption of NO by Cygb and rate constants of the molecular reactions involved. The predicted rate of O(2)-dependent consumption of NO by Cygb is consistent with experimental results supporting the validity of the kinetic model. Simulations based on this kinetic model suggest that the high efficiency of Cygb in regulating the NO consumption rate is due to the rapid reduction of Cygb by cellular reductants, which greatly increases the rate of consumption of NO at higher O(2) concentrations, and binding of NO to Cygb, which reduces the rate of consumption of NO at lower O(2) concentrations. Thus, the coexistence of Cygb with efficient reductants in tissues allows Cygb to function as an O(2)-dependent regulator of NO decay.


Assuntos
Globinas/química , Globinas/fisiologia , Óxido Nítrico/metabolismo , Oxigênio/fisiologia , Citoglobina , Globinas/genética , Humanos , Óxido Nítrico/química , Óxido Nítrico/genética , Oxigênio/química , Plasmídeos/genética , Substâncias Redutoras/química , Substâncias Redutoras/metabolismo , Espectrofotometria Ultravioleta
16.
Arch Biochem Biophys ; 520(1): 7-16, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22286026

RESUMO

Tetrahydrobiopterin (BH(4)) is an essential cofactor of endothelial nitric oxide (NO) synthase and when depleted, endothelial dysfunction results with decreased production of NO. BH(4) is also an anti-oxidant being a good "scavenger" of oxidative species. NADPH oxidase, xanthine oxidase, and mitochondrial enzymes producing reactive oxygen species (ROS) can induce elevated oxidant stress and cause BH(4) oxidation and subsequent decrease in NO production and bioavailability. In order to define the process of ROS-mediated BH(4) degradation, a sensitive method for monitoring pteridine redox-state changes is required. Considering that the conventional fluorescence method is an indirect method requiring conversion of all pteridines to oxidized forms, it would be beneficial to use a rapid quantitative assay for the individual detection of BH(4) and its related pteridine metabolites. To study, in detail, the BH(4) oxidative pathways, a rapid direct sensitive HPLC assay of BH(4) and its pteridine derivatives was adapted using sequential electrochemical and fluorimetric detection. We examined BH(4) autoxidation, hydrogen peroxide- and superoxide-driven oxidation, and Fenton reaction hydroxyl radical-driven BH(4) transformation. We demonstrate that the formation of the primary two-electron oxidation product, dihydrobiopterin (BH(2)), predominates with oxygen-induced BH(4) autoxidation and superoxide-catalyzed oxidation, while the irreversible metabolites, pterin and dihydroxanthopterin (XH(2)), are largely produced during hydroxyl radical-driven BH(4) oxidation.


Assuntos
Biopterinas/análogos & derivados , Cromatografia Líquida de Alta Pressão/métodos , Eletroquímica/métodos , Fluorometria/métodos , Pteridinas/análise , Pteridinas/química , Biopterinas/análise , Biopterinas/química , Oxirredução
17.
Biochem J ; 433(1): 163-74, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20950274

RESUMO

NOSs (NO synthases, EC 1.14.13.39) are haem-thiolate enzymes that catalyse a two-step oxidation of L-arginine to generate NO. The structural and electronic features that regulate their NO synthesis activity are incompletely understood. To investigate how haem electronics govern the catalytic properties of NOS, we utilized a bacterial haem transporter protein to overexpress a mesohaem-containing nNOS (neuronal NOS) and characterized the enzyme using a variety of techniques. Mesohaem-nNOS catalysed NO synthesis and retained a coupled NADPH consumption much like the wild-type enzyme. However, mesohaem-nNOS had a decreased rate of Fe(III) haem reduction and had increased rates for haem-dioxy transformation, Fe(III) haem-NO dissociation and Fe(II) haem-NO reaction with O2. These changes are largely related to the 48 mV decrease in haem midpoint potential that we measured for the bound mesohaem cofactor. Mesohaem nNOS displayed a significantly lower Vmax and KmO2 value for its NO synthesis activity compared with wild-type nNOS. Computer simulation showed that these altered catalytic behaviours of mesohaem-nNOS are consistent with the changes in the kinetic parameters. Taken together, the results of the present study reveal that several key kinetic parameters are sensitive to changes in haem electronics in nNOS, and show how these changes combine to alter its catalytic behaviour.


Assuntos
Heme/química , Mesoporfirinas/química , Óxido Nítrico Sintase Tipo I/química , Proteínas de Bactérias , Transporte Biológico , Catálise , Elétrons , Heme/metabolismo , Cinética , Óxido Nítrico Sintase Tipo I/metabolismo , Oxirredução
18.
J Biol Chem ; 285(17): 12571-8, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20178978

RESUMO

Carbon monoxide dehydrogenase from the aerobic bacterium Oligotropha carboxidovorans catalyzes the oxidation of CO to CO(2), yielding two electrons and two H(+). The steady-state kinetics of the enzyme exhibit a pH optimum of 7.2 with a k(cat) of 93.3 s(-1) and K(m) of 10.7 microM at 25 degrees C. k(red) for the reductive half-reaction agrees well with k(cat) and exhibits a similar pH optimum, indicating that the rate-limiting step of overall turnover is likely in the reductive half-reaction. No dependence on CO concentration was observed in the rapid reaction kinetics, however, suggesting that CO initially binds rapidly to the enzyme, possibly at the Cu(I) of the active site, prior to undergoing oxidation. A Mo(V) species that exhibits strong coupling to the copper of the active center (I = 3/2) has been characterized by EPR. The signal is further split when [(13)C]CO is used to generate it, demonstrating that substrate (or product) is a component of the signal-giving species. Finally, resonance Raman spectra of CODH reveal the presence of FAD, Fe/S clusters, and a [CuSMoO(2)] coordination in the active site, consistent with earlier x-ray absorption and crystallographic results.


Assuntos
Aldeído Oxirredutases/química , Alphaproteobacteria/enzimologia , Proteínas de Bactérias/química , Cobre , Metaloproteínas/química , Molibdênio , Complexos Multienzimáticos/química , Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Metaloproteínas/metabolismo , Complexos Multienzimáticos/metabolismo , Oxirredução
19.
J Org Chem ; 76(10): 3853-60, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21488696

RESUMO

Measurement of thiol concentrations is of great importance for characterizing their critical role in normal metabolism and disease. Low-frequency electron paramagnetic resonance (EPR) spectroscopy and imaging, coupled with the use of exogenous paramagnetic probes, have been indispensable techniques for the in vivo measurement of various physiological parameters owing to the specificity, noninvasiveness and good depth of magnetic field penetration in animal tissues. However, in vivo detection of thiol levels by EPR spectroscopy and imaging is limited due to the need for improved probes. We report the first synthesis of trityl radical-conjugated disulfide biradicals (TSSN and TSST) as paramagnetic thiol probes. The use of trityl radicals in the construction of these biradicals greatly facilitates thiol measurement by EPR spectroscopy since trityls have extraordinary stability in living tissues with a single narrow EPR line that enables high sensitivity and resolution for in vivo EPR spectroscopy and imaging. Both biradicals exhibit broad characteristic EPR spectra at room temperature because of their intramolecular spin-spin interaction. Reaction of these biradicals with thiol compounds such as glutathione (GSH) and cysteine results in the formation of trityl monoradicals which exhibit high spectral sensitivity to oxygen. The moderately slow reaction between the biradicals and GSH (k(2) ∼ 0.3 M(-1) s(-1) for TSSN and 0.2 M(-1) s(-1) for TSST) allows for in vivo measurement of GSH concentration without altering the redox environment in biological systems. The GSH concentration in rat liver was determined to be 3.49 ± 0.14 mM by TSSN and 3.67 ± 0.24 mM by TSST, consistent with the value (3.71 ± 0.09 mM) determined by the Ellman's reagent. Thus, these trityl-based thiol probes exhibit unique properties enabling measurement of thiols in biological systems and should be of great value for monitoring redox metabolism.


Assuntos
Técnicas de Química Analítica/instrumentação , Dissulfetos/química , Compostos de Sulfidrila/análise , Compostos de Tritil/química , Compostos de Tritil/síntese química , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Glutationa/análise , Fígado/química , Óxidos de Nitrogênio/química , Oxigênio/química , Ratos
20.
Biochemistry ; 49(14): 3129-37, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20184376

RESUMO

Endothelial nitric oxide synthase (eNOS) is an important regulator of vascular and cardiac function. Peroxynitrite (ONOO(-)) inactivates eNOS, but questions remain regarding the mechanisms of this process. It has been reported that inactivation is due to oxidation of the eNOS zinc-thiolate cluster, rather than the cofactor tetrahydrobiopterin (BH(4)); however, this remains highly controversial. Therefore, we investigated the mechanisms of ONOO(-)-induced eNOS dysfunction and their dose dependence. Exposure of human eNOS to ONOO(-) resulted in a dose-dependent loss of activity with a marked destabilization of the eNOS dimer. HPLC analysis indicated that both free and eNOS-bound BH(4) were oxidized during exposure to ONOO(-); however, full oxidation of protein-bound biopterin required higher ONOO(-) levels. Additionally, ONOO(-) triggered changes in the UV/visible spectrum and heme content of the enzyme. Preincubation of eNOS with BH(4) decreased dimer destabilization and heme alteration. Addition of BH(4) to the ONOO(-)-destabilized eNOS dimer only partially rescued enzyme function. In contrast to ONOO(-) treatment, incubation with the zinc chelator TPEN with removal of enzyme-bound zinc did not change the eNOS activity or stability of the SDS-resistant eNOS dimer, demonstrating that the dimer stabilization induced by BH(4) does not require zinc occupancy of the zinc-thiolate cluster. While ONOO(-) treatment was observed to induce loss of Zn binding, this cannot account for the loss of enzyme activity. Therefore, ONOO(-)-induced eNOS inactivation is primarily due to oxidation of BH(4) and irreversible destruction of the heme/heme center.


Assuntos
Biopterinas/análogos & derivados , Heme/química , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/química , Ácido Peroxinitroso/química , Biopterinas/química , Boranos/química , Estabilidade Enzimática , Hemina/química , Humanos , Ligação Proteica , Multimerização Proteica , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA