Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Semin Cell Dev Biol ; 92: 97-104, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30153479

RESUMO

Specification of primordial germ cells (PGCs) in all vertebrates takes place in extragonadal sites. This requires migration of PGCs through embryonic tissues towards the genital ridges by both passive and active types of migration. Commonly, colonization in the genital ridges follows migration of the PGCs along the thin tissue of the dorsal mesentery. Here we review the anatomy of the dorsal mesentery, the role it plays in migration of PGCs, and the interactions of PGCs with different cell types, extracellular matrix and signaling pathways that are all essential for attraction and orientation of PGCs along the dorsal mesentery towards the gonad anlage.


Assuntos
Células Germinativas/crescimento & desenvolvimento , Mesentério/embriologia , Animais , Movimento Celular , Embrião de Galinha , Humanos
2.
Development ; 142(24): 4266-78, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26525671

RESUMO

Formation and remodeling of vascular beds are complex processes orchestrated by multiple signaling pathways. Although it is well accepted that vessels of a particular organ display specific features that enable them to fulfill distinct functions, the embryonic origins of tissue-specific vessels and the molecular mechanisms regulating their formation are poorly understood. The subintestinal plexus of the zebrafish embryo comprises vessels that vascularize the gut, liver and pancreas and, as such, represents an ideal model in which to investigate the early steps of organ-specific vessel formation. Here, we show that both arterial and venous components of the subintestinal plexus originate from a pool of specialized angioblasts residing in the floor of the posterior cardinal vein (PCV). Using live imaging of zebrafish embryos, in combination with photoconvertable transgenic reporters, we demonstrate that these angioblasts undergo two phases of migration and differentiation. Initially, a subintestinal vein forms and expands ventrally through a Bone Morphogenetic Protein-dependent step of collective migration. Concomitantly, a Vascular Endothelial Growth Factor-dependent shift in the directionality of migration, coupled to the upregulation of arterial markers, is observed, which culminates with the generation of the supraintestinal artery. Together, our results establish the zebrafish subintestinal plexus as an advantageous model for the study of organ-specific vessel development and provide new insights into the molecular mechanisms controlling its formation. More broadly, our findings suggest that PCV-specialized angioblasts contribute not only to the formation of the early trunk vasculature, but also to the establishment of late-forming, tissue-specific vascular beds.


Assuntos
Desenvolvimento Embrionário , Especificidade de Órgãos , Veias/citologia , Veias/embriologia , Peixe-Zebra/embriologia , Animais , Artérias/citologia , Movimento Celular , Sistema Digestório/irrigação sanguínea , Células Endoteliais/citologia , Fígado/irrigação sanguínea , Receptores Notch/metabolismo , Vasos Retinianos/metabolismo
3.
BMC Biol ; 14: 57, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27392568

RESUMO

BACKGROUND: Compartment boundaries are an essential developmental mechanism throughout evolution, designated to act as organizing centers and to regulate and localize differently fated cells. The hindbrain serves as a fascinating example for this phenomenon as its early development is devoted to the formation of repetitive rhombomeres and their well-defined boundaries in all vertebrates. Yet, the actual role of hindbrain boundaries remains unresolved, especially in amniotes. RESULTS: Here, we report that hindbrain boundaries in the chick embryo consist of a subset of cells expressing the key neural stem cell (NSC) gene Sox2. These cells co-express other neural progenitor markers such as Transitin (the avian Nestin), GFAP, Pax6 and chondroitin sulfate proteoglycan. The majority of the Sox2(+) cells that reside within the boundary core are slow-dividing, whereas nearer to and within rhombomeres Sox2(+) cells are largely proliferating. In vivo analyses and cell tracing experiments revealed the contribution of boundary Sox2(+) cells to neurons in a ventricular-to-mantle manner within the boundaries, as well as their lateral contribution to proliferating Sox2(+) cells in rhombomeres. The generation of boundary-derived neurospheres from hindbrain cultures confirmed the typical NSC behavior of boundary cells as a multipotent and self-renewing Sox2(+) cell population. Inhibition of Sox2 in boundaries led to enhanced and aberrant neural differentiation together with inhibition in cell-proliferation, whereas Sox2 mis-expression attenuated neurogenesis, confirming its significant function in hindbrain neuronal organization. CONCLUSIONS: Data obtained in this study deciphers a novel role of hindbrain boundaries as repetitive pools of neural stem/progenitor cells, which provide proliferating progenitors and differentiating neurons in a Sox2-dependent regulation.


Assuntos
Padronização Corporal , Células-Tronco Neurais/citologia , Rombencéfalo/citologia , Fatores de Transcrição SOXB1/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Autorrenovação Celular , Embrião de Galinha , Modelos Biológicos , Células-Tronco Neurais/metabolismo , Rombencéfalo/embriologia , Esferoides Celulares/citologia , Fatores de Tempo
4.
J Anat ; 224(5): 556-63, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24697411

RESUMO

Despite the importance of the chicken as a model system, our understanding of the development of chicken primordial germ cells (PGCs) is far from complete. Here we characterized the morphology of PGCs at different developmental stages, their migration pattern in the dorsal mesentery of the chicken embryo, and the distribution of the EMA1 epitope on PGCs. The spatial distribution of PGCs during their migration was characterized by immunofluorescence on whole-mounted chicken embryos and on paraffin sections, using EMA1 and chicken vasa homolog antibodies. While in the germinal crescent PGCs were rounded and only 25% of them were labeled by EMA1, often seen as a concentrated cluster on the cell surface, following extravasation and migration in the dorsal mesentery PGCs acquired an elongated morphology, and 90% exhibited EMA1 epitope, which was concentrated at the tip of the pseudopodia, at the contact sites between neighboring PGCs. Examination of PGC migration in the dorsal mesentery of Hamburger and Hamilton stage 20-22 embryos demonstrated a left-right asymmetry, as migration of cells toward the genital ridges was usually restricted to the right, rather than the left, side of the mesentery. Moreover, an examination of another group of cells that migrate through the dorsal mesentery, the enteric neural crest cells, revealed a similar preference for the right side of the mesentery, suggesting that the migratory pathway of PGCs is dictated by the mesentery itself. Our findings provide new insights into the migration pathway of PGCs in the dorsal mesentery, and suggest a link between EMA1, PGC migration and cell-cell interactions. These findings may contribute to a better understanding of the mechanism underlying migration of PGCs in avians.


Assuntos
Epitopos/metabolismo , Células Germinativas/fisiologia , Mesentério/embriologia , Animais , Biomarcadores/metabolismo , Movimento Celular/fisiologia , Embrião de Galinha , Mesentério/citologia
5.
Cell Rep ; 35(11): 109255, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133928

RESUMO

The formation of new vessels requires a tight synchronization between proliferation, differentiation, and sprouting. However, how these processes are differentially activated, often by neighboring endothelial cells (ECs), remains unclear. Here, we identify cell cycle progression as a regulator of EC sprouting and differentiation. Using transgenic zebrafish illuminating cell cycle stages, we show that venous and lymphatic precursors sprout from the cardinal vein exclusively in G1 and reveal that cell-cycle arrest is induced in these ECs by overexpression of p53 and the cyclin-dependent kinase (CDK) inhibitors p27 and p21. We further demonstrate that, in vivo, forcing G1 cell-cycle arrest results in enhanced vascular sprouting. Mechanistically, we identify the mitogenic VEGFC/VEGFR3/ERK axis as a direct inducer of cell-cycle arrest in ECs and characterize the cascade of events that render "sprouting-competent" ECs. Overall, our results uncover a mechanism whereby mitogen-controlled cell-cycle arrest boosts sprouting, raising important questions about the use of cell cycle inhibitors in pathological angiogenesis and lymphangiogenesis.


Assuntos
Pontos de Checagem do Ciclo Celular , Células Endoteliais , Vasos Linfáticos , Neovascularização Fisiológica , Fator C de Crescimento do Endotélio Vascular , Veias , Proteínas de Peixe-Zebra , Animais , Animais Geneticamente Modificados , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fase G1 , Vasos Linfáticos/citologia , Sistema de Sinalização das MAP Quinases , Neovascularização Fisiológica/efeitos dos fármacos , Roscovitina/farmacologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Veias/citologia , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
6.
J Endocrinol ; 190(2): 527-35, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16899585

RESUMO

Agonists of membranal melanocortin 3 and 4 receptors (MC3/4Rs) are known to take part in the complex control mechanism of energy balance. In this study, we compared the physiological response to an exogenous MC3/4R agonist and the hypothalamic expression of proopic melanocortin (POMC) gene, encoding few MC3/4R ligands, between broiler and layer chicken strains. These strains, representing the two most prominent commercial strains of chickens grown for meat (broilers) and egg production (layers), differ in their food intake, fat accumulation, and reproductive performance and, therefore, form a good model of obese and lean phenotypes, respectively. A single i.v. injection of the synthetic peptide melanotan-II (MT-II; 1 mg/kg body weight) into the wing vein of feed-restricted birds led to attenuation of food intake upon exposure to feeding ad libitum in both broiler and layer chickens. A study of the POMC mRNA encoding the two prominent natural MC3/4R agonists, alpha-MSH and ACTH, also revealed a general similarity between the strains. Under feeding conditions ad libitum, POMC mRNA levels were highly similar in chicks of both strains and this level was significantly reduced upon feed restriction. However, POMC mRNA down-regulation upon feed restriction was more pronounced in layers than in broilers. These results suggest: (i) a role for MC3/4R agonists in the control of appetite; (ii) that the physiological differences between broilers and layers are not related to unresponsiveness of broiler chickens to the satiety signal of MC3/4R ligands. Therefore, these findings suggest that artificial activation of this circuit in broiler chicks could help to accommodate with their agricultural shortcomings of overeating, fattening, and impaired reproduction.


Assuntos
Galinhas/metabolismo , Obesidade/metabolismo , Peptídeos Cíclicos/farmacologia , Receptor Tipo 4 de Melanocortina/agonistas , alfa-MSH/análogos & derivados , alfa-MSH/metabolismo , Animais , Feminino , Expressão Gênica , Hipotálamo/metabolismo , Fenótipo , Pró-Opiomelanocortina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , alfa-MSH/farmacologia
7.
Endocrinology ; 155(9): 3376-84, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24758303

RESUMO

Leptin, the key regulator of mammalian energy balance, has been at the center of a great controversy in avian biology for the last 15 years since initial reports of a putative leptin gene (LEP) in chickens. Here, we characterize a novel LEP in rock dove (Columba livia) with low similarity of the predicted protein sequence (30% identity, 47% similarity) to the human ortholog. Searching the Sequence-Read-Archive database revealed leptin transcripts, in the dove's liver, with 2 noncoding exons preceding 2 coding exons. This unusual 4-exon structure was validated by sequencing of a GC-rich product (76% GC, 721 bp) amplified from liver RNA by RT-PCR. Sequence alignment of the dove leptin with orthologous leptins indicated that it consists of a leader peptide (21 amino acids; aa) followed by the mature protein (160 aa), which has a putative structure typical of 4-helical-bundle cytokines except that it is 12 aa longer than human leptin. Extra residues (10 aa) were located within the loop between 2 5'-helices, interrupting the amino acid motif that is conserved in tetrapods and considered essential for activation of leptin receptor (LEPR) but not for receptor binding per se. Quantitative RT-PCR of 11 tissues showed highest (P < .05) expression of LEP in the dove's liver, whereas the dove LEPR peaked (P < .01) in the pituitary. Both genes were prominently expressed in the gonads and at lower levels in tissues involved in mammalian leptin signaling (adipose; hypothalamus). A bioassay based on activation of the chicken LEPR in vitro showed leptin activity in the dove's circulation, suggesting that dove LEP encodes an active protein, despite the interrupted loop motif. Providing tools to study energy-balance control at an evolutionary perspective, our original demonstration of leptin signaling in dove predicts a more ancient role of leptin in growth and reproduction in birds, rather than appetite control.


Assuntos
Proteínas Aviárias/genética , Columbidae/genética , Leptina/genética , Sequência de Aminoácidos , Animais , Proteínas Aviárias/química , Proteínas Aviárias/metabolismo , Galinhas , Columbidae/metabolismo , Éxons , Humanos , Leptina/química , Leptina/metabolismo , Fígado/metabolismo , Dados de Sequência Molecular , Filogenia , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Alinhamento de Sequência , Perus
8.
PLoS One ; 7(5): e36531, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22606269

RESUMO

The lack of affordable techniques for gene transfer in birds has inhibited the advancement of molecular studies in avian species. Here we demonstrate a new approach for introducing genes into chicken somatic tissues by administration of a lentiviral vector, derived from the feline immunodeficiency virus (FIV), into the chorioallantoic membrane (CAM) of chick embryos on embryonic day 11. The FIV-derived vectors carried yellow fluorescent protein (YFP) or recombinant alpha-melanocyte-stimulating hormone (α-MSH) genes, driven by the cytomegalovirus (CMV) promoter. Transgene expression, detected in chicks 2 days after hatch by quantitative real-time PCR, was mostly observed in the liver and spleen. Lower expression levels were also detected in the brain, kidney, heart and breast muscle. Immunofluorescence and flow cytometry analyses confirmed transgene expression in chick tissues at the protein level, demonstrating a transduction efficiency of ∼0.46% of liver cells. Integration of the viral vector into the chicken genome was demonstrated using genomic repetitive (CR1)-PCR amplification. Viability and stability of the transduced cells was confirmed using terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) assay, immunostaining with anti-proliferating cell nuclear antigen (anti-PCNA), and detection of transgene expression 51 days post transduction. Our approach led to only 9% drop in hatching efficiency compared to non-injected embryos, and all of the hatched chicks expressed the transgenes. We suggest that the transduction efficiency of FIV vectors combined with the accessibility of the CAM vasculature as a delivery route comprise a new powerful and practical approach for gene delivery into somatic tissues of chickens. Most relevant is the efficient transduction of the liver, which specializes in the production and secretion of proteins, thereby providing an optimal target for prolonged study of secreted hormones and peptides.


Assuntos
Embrião de Galinha , Técnicas de Transferência de Genes , Vetores Genéticos , Vírus da Imunodeficiência Felina/genética , Animais , Animais Geneticamente Modificados , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Células Cultivadas , Embrião de Galinha/metabolismo , Embrião de Galinha/virologia , Galinhas/genética , Membrana Corioalantoide/metabolismo , Membrana Corioalantoide/virologia , Primers do DNA/genética , Fígado/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Distribuição Tecidual , Transdução Genética/métodos , alfa-MSH/genética , alfa-MSH/metabolismo
9.
J Endocrinol ; 207(1): 113-22, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20675300

RESUMO

Unsuccessful attempts to identify the leptin gene in birds are well documented, despite the characterization of its receptor (LEPR). Since leptin and LEPR have poor sequence conservation among vertebrates, we speculated that a functional assay should represent the best way to detect leptin in birds. Using a leptin bioassay that is based on activation of the chicken LEPR in cultured cells, blood samples from wild birds with extreme seasonal variation in voluntary food intake and fat deposition (Adélie penguins and bar-tailed godwits) were tested for leptin activity. In these experiments, blood samples collected during the pre-incubation and the chick-rearing periods of Adélie penguins, and during the migratory flight and refueling stages of bar-tailed godwits, were found to contain no detectable leptin activity, while the sensitivity of the assay to activation by human blood samples from donor subjects representing a variety of body mass indices and fat contents was clearly demonstrated. These results suggest that in birds, an alternative control mechanism to that of mammals operates in the communication between the body fat tissues and the central control on energy homeostasis.


Assuntos
Charadriiformes/sangue , Spheniscidae/sangue , Tecido Adiposo/anatomia & histologia , Migração Animal/fisiologia , Animais , Charadriiformes/anatomia & histologia , Charadriiformes/fisiologia , Ingestão de Alimentos/fisiologia , Feminino , Humanos , Masculino , Reprodução/fisiologia , Estações do Ano , Especificidade da Espécie , Spheniscidae/anatomia & histologia , Spheniscidae/fisiologia
11.
J Endocrinol ; 197(2): 325-33, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18434362

RESUMO

We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold.


Assuntos
Leptina/sangue , Receptores para Leptina/genética , Sequência de Aminoácidos , Animais , Bioensaio , Bovinos , Linhagem Celular , Galinhas , Humanos , Dados de Sequência Molecular , Receptores para Leptina/química , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA