Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 208(3): 685-696, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34987111

RESUMO

Immune response dysregulation plays a key role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis. In this study, we evaluated immune and endothelial blood cell profiles of patients with coronavirus disease 2019 (COVID-19) to determine critical differences between those with mild, moderate, or severe COVID-19 using spectral flow cytometry. We examined a suite of immune phenotypes, including monocytes, T cells, NK cells, B cells, endothelial cells, and neutrophils, alongside surface and intracellular markers of activation. Our results showed progressive lymphopenia and depletion of T cell subsets (CD3+, CD4+, and CD8+) in patients with severe disease and a significant increase in the CD56+CD14+Ki67+IFN-γ+ monocyte population in patients with moderate and severe COVID-19 that has not been previously described. Enhanced circulating endothelial cells (CD45-CD31+CD34+CD146+), circulating endothelial progenitors (CD45-CD31+CD34+/-CD146-), and neutrophils (CD11b+CD66b+) were coevaluated for COVID-19 severity. Spearman correlation analysis demonstrated the synergism among age, obesity, and hypertension with upregulated CD56+ monocytes, endothelial cells, and decreased T cells that lead to severe outcomes of SARS-CoV-2 infection. Circulating monocytes and endothelial cells may represent important cellular markers for monitoring postacute sequelae and impacts of SARS-CoV-2 infection during convalescence and for their role in immune host defense in high-risk adults after vaccination.


Assuntos
COVID-19/imunologia , Células Endoteliais/imunologia , Monócitos/imunologia , SARS-CoV-2 , Adolescente , Adulto , Fatores Etários , Idoso , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Biomarcadores , Antígeno CD56/análise , COVID-19/sangue , COVID-19/epidemiologia , Criança , Comorbidade , Células Endoteliais/química , Feminino , Citometria de Fluxo , Humanos , Hipertensão/epidemiologia , Hipertensão/imunologia , Imunofenotipagem , Ativação Linfocitária , Subpopulações de Linfócitos/imunologia , Linfopenia/etiologia , Linfopenia/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/química , Neutrófilos/imunologia , Obesidade/epidemiologia , Obesidade/imunologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
2.
Mol Ther ; 30(5): 1897-1912, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34990810

RESUMO

RNA vaccines have demonstrated efficacy against SARS-CoV-2 in humans, and the technology is being leveraged for rapid emergency response. In this report, we assessed immunogenicity and, for the first time, toxicity, biodistribution, and protective efficacy in preclinical models of a two-dose self-amplifying messenger RNA (SAM) vaccine, encoding a prefusion-stabilized spike antigen of SARS-CoV-2 Wuhan-Hu-1 strain and delivered by lipid nanoparticles (LNPs). In mice, one immunization with the SAM vaccine elicited a robust spike-specific antibody response, which was further boosted by a second immunization, and effectively neutralized the matched SARS-CoV-2 Wuhan strain as well as B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta) variants. High frequencies of spike-specific germinal center B, Th0/Th1 CD4, and CD8 T cell responses were observed in mice. Local tolerance, potential systemic toxicity, and biodistribution of the vaccine were characterized in rats. In hamsters, the vaccine candidate was well-tolerated, markedly reduced viral load in the upper and lower airways, and protected animals against disease in a dose-dependent manner, with no evidence of disease enhancement following SARS-CoV-2 challenge. Therefore, the SARS-CoV-2 SAM (LNP) vaccine candidate has a favorable safety profile, elicits robust protective immune responses against multiple SARS-CoV-2 variants, and has been advanced to phase 1 clinical evaluation (NCT04758962).


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Cricetinae , Humanos , Lipossomos , Camundongos , Nanopartículas , RNA Mensageiro , Ratos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Distribuição Tecidual
3.
Vox Sang ; 116(10): 1076-1083, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33835489

RESUMO

BACKGROUND AND OBJECTIVES: Convalescent plasma (CP) has been embraced as a safe therapeutic option for coronavirus disease 2019 (COVID-19), while other treatments are developed. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not transmissible by transfusion, but bloodborne pathogens remain a risk in regions with high endemic prevalence of disease. Pathogen reduction can mitigate this risk; thus, the objective of this study was to evaluate the effect of riboflavin and ultraviolet light (R + UV) pathogen reduction technology on the functional properties of COVID-19 CP (CCP). MATERIALS AND METHODS: COVID-19 convalescent plasma units (n = 6) from recovered COVID-19 research donors were treated with R + UV. Pre- and post-treatment samples were tested for coagulation factor and immunoglobulin retention. Antibody binding to spike protein receptor-binding domain (RBD), S1 and S2 epitopes of SARS-CoV-2 was assessed by ELISA. Neutralizing antibody (nAb) function was assessed by pseudovirus reporter viral particle neutralization (RVPN) assay and plaque reduction neutralization test (PRNT). RESULTS: Mean retention of coagulation factors was ≥70%, while retention of immunoglobulins was 100%. Starting nAb titres were low, but PRNT50 titres did not differ between pre- and post-treatment samples. No statistically significant differences were detected in levels of IgG (P ≥ 0·3665) and IgM (P ≥ 0·1208) antibodies to RBD, S1 and S2 proteins before and after treatment. CONCLUSION: R + UV PRT effects on coagulation factors were similar to previous reports, but no significant effects were observed on immunoglobulin concentration and antibody function. SARS-CoV-2 nAb function in CCP is conserved following R + UV PRT treatment.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Anticorpos Antivirais , COVID-19/terapia , Humanos , Imunização Passiva , Riboflavina , SARS-CoV-2 , Tecnologia , Raios Ultravioleta , Soroterapia para COVID-19
4.
BMC Infect Dis ; 21(1): 677, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256735

RESUMO

BACKGROUND: SARS-CoV-2 has swept across the globe, causing millions of deaths worldwide. Though most survive, many experience symptoms of COVID-19 for months after acute infection. Successful prevention and treatment of acute COVID-19 infection and its associated sequelae is dependent on in-depth knowledge of viral pathology across the spectrum of patient phenotypes and physiologic responses. Longitudinal biobanking provides a valuable resource of clinically integrated, easily accessed, and quality-controlled samples for researchers to study differential multi-organ system responses to SARS-CoV-2 infection, post-acute sequelae of COVID-19 (PASC), and vaccination. METHODS: Adults with a history of a positive SARS-CoV-2 nasopharyngeal PCR are actively recruited from the community or hospital settings to enroll in the Northern Colorado SARS-CoV-2 Biorepository (NoCo-COBIO). Blood, saliva, stool, nasopharyngeal specimens, and extensive clinical and demographic data are collected at 4 time points over 6 months. Patients are assessed for PASC during longitudinal follow-up by physician led symptom questionnaires and physical exams. This clinical trial registration is NCT04603677 . RESULTS: We have enrolled and collected samples from 119 adults since July 2020, with 66% follow-up rate. Forty-nine percent of participants assessed with a symptom surveillance questionnaire (N = 37 of 75) had PASC at any time during follow-up (up to 8 months post infection). Ninety-three percent of hospitalized participants developed PASC, while 23% of those not requiring hospitalization developed PASC. At 90-174 days post SARS-CoV-2 diagnosis, 67% of all participants had persistent symptoms (N = 37 of 55), and 85% percent of participants who required hospitalization during initial infection (N = 20) still had symptoms. The most common symptoms reported after 15 days of infection were fatigue, loss of smell, loss of taste, exercise intolerance, and cognitive dysfunction. CONCLUSIONS: Patients who were hospitalized for COVID-19 were significantly more likely to have PASC than those not requiring hospitalization, however 23% of patients who were not hospitalized also developed PASC. This patient-matched, multi-matrix, longitudinal biorepository from COVID-19 survivors with and without PASC will allow for current and future research to better understand the pathophysiology of disease and to identify targeted interventions to reduce risk for PASC. Registered 27 October 2020 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04603677 .


Assuntos
Bancos de Espécimes Biológicos , Teste para COVID-19/métodos , COVID-19/complicações , SARS-CoV-2/genética , Sobreviventes , Adulto , Idoso , COVID-19/sangue , COVID-19/epidemiologia , COVID-19/patologia , COVID-19/virologia , Colorado/epidemiologia , Progressão da Doença , Feminino , Seguimentos , Hospitalização , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Manejo de Espécimes , Adulto Jovem , Síndrome de COVID-19 Pós-Aguda
5.
Nat Immunol ; 9(12): 1399-406, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18978793

RESUMO

Toll-like receptor (TLR) signaling in macrophages is required for antipathogen responses, including the biosynthesis of nitric oxide from arginine, and is essential for immunity to Mycobacterium tuberculosis, Toxoplasma gondii and other intracellular pathogens. Here we report a 'loophole' in the TLR pathway that is advantageous to these pathogens. Intracellular pathogens induced expression of the arginine hydrolytic enzyme arginase 1 (Arg1) in mouse macrophages through the TLR pathway. In contrast to diseases dominated by T helper type 2 responses in which Arg1 expression is greatly increased by interleukin 4 and 13 signaling through the transcription factor STAT6, TLR-mediated Arg1 induction was independent of the STAT6 pathway. Specific elimination of Arg1 in macrophages favored host survival during T. gondii infection and decreased lung bacterial load during tuberculosis infection.


Assuntos
Arginase/imunologia , Infecções Bacterianas/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Receptores Toll-Like/imunologia , Animais , Arginase/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/imunologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator de Transcrição STAT6/imunologia , Fator de Transcrição STAT6/metabolismo , Receptores Toll-Like/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(16): 5111-6, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25820174

RESUMO

Silencing of interleukin-32 (IL-32) in a differentiated human promonocytic cell line impairs killing of Mycobacterium tuberculosis (MTB) but the role of IL-32 in vivo against MTB remains unknown. To study the effects of IL-32 in vivo, a transgenic mouse was generated in which the human IL-32γ gene is expressed using the surfactant protein C promoter (SPC-IL-32γTg). Wild-type and SPC-IL-32γTg mice were infected with a low-dose aerosol of a hypervirulent strain of MTB (W-Beijing HN878). At 30 and 60 d after infection, the transgenic mice had 66% and 85% fewer MTB in the lungs and 49% and 68% fewer MTB in the spleens, respectively; the transgenic mice also exhibited greater survival. Increased numbers of host-protective innate and adaptive immune cells were present in SPC-IL-32γTg mice, including tumor necrosis factor-alpha (TNFα) positive lung macrophages and dendritic cells, and IFN-gamma (IFNγ) and TNFα positive CD4(+) and CD8(+) T cells in the lungs and mediastinal lymph nodes. Alveolar macrophages from transgenic mice infected with MTB ex vivo had reduced bacterial burden and increased colocalization of green fluorescent protein-labeled MTB with lysosomes. Furthermore, mouse macrophages made to express IL-32γ but not the splice variant IL-32ß were better able to limit MTB growth than macrophages capable of producing both. The lungs of patients with tuberculosis showed increased IL-32 expression, particularly in macrophages of granulomas and airway epithelial cells but also B cells and T cells. We conclude that IL-32γ enhances host immunity to MTB.


Assuntos
Interleucinas/metabolismo , Mycobacterium tuberculosis/patogenicidade , Tuberculose/imunologia , Tuberculose/prevenção & controle , Imunidade Adaptativa/imunologia , Animais , Antígenos Ly/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Humanos , Imunidade Inata/imunologia , Interferon gama , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Linfonodos/imunologia , Linfonodos/patologia , Macrófagos Alveolares/imunologia , Camundongos Transgênicos , Mutação/genética , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Sítios de Splice de RNA/genética , Linfócitos T Reguladores/imunologia , Transfecção , Transgenes , Tuberculose/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Virulência/imunologia
7.
Antimicrob Agents Chemother ; 59(11): 6904-12, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26303795

RESUMO

Over the last 10 years, Mycobacterium abscessus group strains have emerged as important human pathogens, which are associated with significantly higher fatality rates than any other rapidly growing mycobacteria. These opportunistic pathogens are widespread in the environment and can cause a wide range of clinical diseases, including skin, soft tissue, central nervous system, and disseminated infections; by far, the most difficult to treat is the pulmonary form. Infections with M. abscessus are often multidrug-resistant (MDR) and require prolonged treatment with various regimens and, many times, result in high mortality despite maximal therapy. We report here the evaluation of diverse mouse infection models for their ability to produce a progressive high level of infection with M. abscessus. The nude (nu/nu), SCID (severe combined immunodeficiency), gamma interferon knockout (GKO), and granulocyte-macrophage colony-stimulating factor (GMCSF) knockout mice fulfilled the criteria for an optimal model for compound screening. Thus, we set out to assess the antimycobacterial activity of clarithromycin, clofazimine, bedaquiline, and clofazimine-bedaquiline combinations against M. abscessus-infected GKO and SCID murine infection models. Treatment of GKO and SCID mice with a combination of clofazimine and bedaquiline was the most effective in decreasing the M. abscessus organ burden.


Assuntos
Antibacterianos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Mycobacterium/efeitos dos fármacos , Animais , Claritromicina/farmacologia , Clofazimina/farmacologia , Diarilquinolinas/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Camundongos , Camundongos Knockout , Camundongos SCID , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium
8.
Am J Pathol ; 184(4): 1104-1118, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24492198

RESUMO

Impaired glucose tolerance and type 2 diabetes were induced in guinea pigs to model the emerging comorbidity of Mycobacterium tuberculosis infection in diabetic patients. Type 2 diabetes mellitus was induced by low-dose streptozotocin in guinea pigs rendered glucose intolerant by first feeding a high-fat, high-carbohydrate diet before M. tuberculosis exposure. M. tuberculosis infection of diabetic guinea pigs resulted in severe and rapidly progressive tuberculosis (TB) with a shortened survival interval, more severe pulmonary and extrapulmonary pathology, and a higher bacterial burden compared with glucose-intolerant and nondiabetic controls. Compared with nondiabetics, diabetic guinea pigs with TB had an exacerbated proinflammatory response with more severe granulocytic inflammation and higher gene expression for the cytokines/chemokines interferon-γ, IL-17A, IL-8, and IL-10 in the lung and for interferon-γ, tumor necrosis factor-α, IL-8, and monocyte chemoattractant protein-1 in the spleen. TB disease progression in guinea pigs with impaired glucose tolerance was similar to that of nondiabetic controls in the early stages of infection but was more severe by day 90. The guinea pig model of type 2 diabetes-TB comorbidity mimics important features of the naturally occurring disease in humans. This model will be beneficial in understanding the complex pathogenesis of TB in diabetic patients and to test new strategies to improve TB and diabetes control when the two diseases occur together.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/imunologia , Tuberculose/complicações , Tuberculose/imunologia , Animais , Comorbidade , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Citometria de Fluxo , Cobaias , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tuberculose/patologia
9.
BMC Microbiol ; 15: 39, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25887904

RESUMO

BACKGROUND: Macrophages are the primary effector cells responsible for killing Mycobacterium tuberculosis (MTB) through various mechanisms, including apoptosis. However, MTB can evade host immunity to create a favorable environment for intracellular replication. MTB-infected human macrophages produce interleukin-32 (IL-32). IL-32 is a pro-inflammatory cytokine and has several isoforms. We previously found that IL-32γ reduced the burden of MTB in human macrophages, in part, through the induction of caspase-3-dependent apoptosis. However, based on our previous studies, we hypothesized that caspase-3-independent death pathways may also mediate IL-32 control of MTB infection. Herein, we assessed the potential roles of cathepsin-mediated apoptosis, caspase-1-mediated pyroptosis, and apoptosis-inducing factor (AIF) in mediating IL-32γ control of MTB infection in THP-1 cells. RESULTS: Differentiated human THP-1 macrophages were infected with MTB H37Rv alone or in the presence of specific inhibitors to caspase-1, cathepsin B/D, or cathepsin L for up to four days, after which TUNEL-positive cells were quantified; in addition, MTB was quantified by culture as well as by the percentage of THP-1 cells that were infected with green fluorescent protein (GFP)-labeled MTB as determined by microscopy. AIF expression was inhibited using siRNA technology. Inhibition of cathepsin B/D, cathepsin L, or caspase-1 activity significantly abrogated the IL-32γ-mediated reduction in the number of intracellular MTB and of the percentage of GFP-MTB-infected macrophages. Furthermore, inhibition of caspase-1, cathepsin B/D, or cathepsin L in the absence of exogenous IL-32γ resulted in a trend toward an increased proportion of MTB-infected THP-1 cells. Inhibition of AIF activity in the absence of exogenous IL-32γ also increased intracellular burden of MTB. However, since IL-32γ did not induce AIF and because the relative increases in MTB with inhibition of AIF were similar in the presence or absence of IL-32γ, our results indicate that AIF does not mediate the host-protective effect of IL-32γ against MTB. CONCLUSIONS: The anti-MTB effects of IL-32γ are mediated through classical caspase-3-dependent apoptosis as well as caspase-3-independent apoptosis.


Assuntos
Apoptose , Interleucinas/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/imunologia , Carga Bacteriana , Linhagem Celular , Citoplasma/microbiologia , Humanos
10.
Nat Commun ; 15(1): 4500, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802391

RESUMO

Jamaican fruit bats (Artibeus jamaicensis) naturally harbor a wide range of viruses of human relevance. These infections are typically mild in bats, suggesting unique features of their immune system. To better understand the immune response to viral infections in bats, we infected male Jamaican fruit bats with the bat-derived influenza A virus (IAV) H18N11. Using comparative single-cell RNA sequencing, we generated single-cell atlases of the Jamaican fruit bat intestine and mesentery. Gene expression profiling showed that H18N11 infection resulted in a moderate induction of interferon-stimulated genes and transcriptional activation of immune cells. H18N11 infection was predominant in various leukocytes, including macrophages, B cells, and NK/T cells. Confirming these findings, human leukocytes, particularly macrophages, were also susceptible to H18N11, highlighting the zoonotic potential of this bat-derived IAV. Our study provides insight into a natural virus-host relationship and thus serves as a fundamental resource for future in-depth characterization of bat immunology.


Assuntos
Quirópteros , Infecções por Orthomyxoviridae , Análise de Célula Única , Animais , Quirópteros/virologia , Quirópteros/imunologia , Quirópteros/genética , Masculino , Humanos , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/veterinária , Macrófagos/imunologia , Macrófagos/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Perfilação da Expressão Gênica
11.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014249

RESUMO

The Nix-TB clinical trial evaluated a new 6-month regimen containing three-oral-drugs; bedaquiline (B), pretomanid (Pa) and linezolid (L) (BPaL regimen) for treatment of tuberculosis (TB). This regimen achieved remarkable results as almost 90% of the multidrug resistant (MDR) or extensively drug resistant (XDR) TB participants were cured but many patients also developed severe adverse effects (AEs). The AEs were associated with the long-term administration of the protein synthesis inhibitor linezolid. Spectinamide 1599 (S) is also a protein synthesis inhibitor of Mycobacterium tuberculosis with an excellent safety profile but which lacks oral bioavailability. Here we hypothesize that inhaled spectinamide 1599, combined with BPa --BPaS regimen--has similar efficacy to that of BPaL regimen while simultaneously avoiding the L-associated AEs. The BPaL and BPaS regimens were compared in the Balb/c and C3HeB/FeJ murine chronic TB efficacy models. After 4-weeks of treatment, both regimens promoted equivalent bactericidal effect in both TB murine models. However, treatment with BPaL resulted in significant weight loss and the complete blood count suggested development of anemia. These effects were not similarly observed in mice treated with BPaS. BPaL treatment also decreased myeloid to erythroid ratio and increased concentration of proinflammatory cytokines in bone marrow compared to mice receiving BPaS regimen. During therapy both regimens improved the lung lesion burden, reduced neutrophil and cytotoxic T cells counts while increased the number of B and helper and regulatory T cells. These combined data suggest that inhaled spectinamide 1599 combined with BPa is an effective TB regimen that avoids L-associated AEs. IMPORTANCE: Tuberculosis (TB) is an airborne infectious disease that spreads via aerosols containing Mycobacterium tuberculosis (Mtb), the causative agent of TB. TB can be cured by administration of 3-4 drugs for 6-9 months but there are limited treatment options for patients infected with multidrug (MDR) and extensively resistant (XDR) strains of Mtb. BPaL is a new all-oral combination of drugs consisting of Bedaquiline (B), Pretomanid (Pa) and Linezolid (L). This regimen was able to cure ∼90% of MDR and XDR TB patients in clinical trials but many patients developed severe adverse effects (AEs) associated to the long-term administration of linezolid. We evaluated a new regimen in which Linezolid in the BPaL regimen was replaced with inhaled spectinamide 1599. In the current study, we demonstrate that 4-weeks of treatment with inhaled spectinamide 1599 in combination with Bedaquiline and Pretomanid has equivalent efficacy to the BPaL drug combination and avoids the L-associated-AEs.

12.
Front Immunol ; 14: 1303971, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327763

RESUMO

Introduction: Post-acute sequelae of COVID-19 affects the quality of life of many COVID-19 survivors, yet the etiology of post-acute sequelae of COVID-19 remains unknown. We aimed to determine if persistent inflammation and ongoing T-cell activation during convalescence were a contributing factor to the pathogenesis of post-acute sequelae of COVID-19. Methods: We evaluated 67 individuals diagnosed with COVID-19 by nasopharyngeal polymerase chain reaction for persistent symptoms during convalescence at separate time points occurring up to 180 days post-diagnosis. Fifty-two of these individuals were evaluated longitudinally. We obtained whole blood samples at each study visit, isolated peripheral blood mononuclear cells, and stained for multiple T cell activation markers for flow cytometry analysis. The activation states of participants' CD4+ and CD8+ T-cells were next analyzed for each of the persistent symptoms. Results: Overall, we found that participants with persistent symptoms had significantly higher levels of inflammation at multiple time points during convalescence when compared to those who fully recovered from COVID-19. Participants with persistent dyspnea, forgetfulness, confusion, and chest pain had significantly higher levels of proliferating effector T-cells (CD8+Ki67+), and those with chest pain, joint pain, difficulty concentrating, and forgetfulness had higher levels of regulatory T-cells (CD4+CD25+). Additionally, those with dyspnea had significantly higher levels of CD8+CD38+, CD8+ Granzyme B+, and CD8+IL10+ cells. A retrospective comparison of acute phase inflammatory markers in adults with and without post-acute sequelae of COVID-19 showed that CD8+Ki67+ cells were significantly higher at the time of acute illness (up to 14 days post-diagnosis) in those who developed persistent dyspnea. Discussion: These findings suggest continued CD8+ T-cell activation following SARS-CoV-2 infection in adults experiencing post-acute sequelae of COVID-19 and that the increase in T regulatory cells for a subset of these patients represents the ongoing attempt by the host to reduce inflammation.


Assuntos
COVID-19 , Humanos , Adulto , COVID-19/complicações , Linfócitos T CD8-Positivos , Estudos Retrospectivos , Convalescença , Leucócitos Mononucleares , Antígeno Ki-67 , Síndrome de COVID-19 Pós-Aguda , Qualidade de Vida , SARS-CoV-2 , Linfócitos T CD4-Positivos , Estudos de Coortes , Complexo CD3 , Progressão da Doença , Inflamação , Proliferação de Células , Sobreviventes , Dispneia , Dor no Peito
13.
J Proteome Res ; 11(10): 4873-84, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22873951

RESUMO

With the understanding that the laboratory propagated strain of Mycobacterium tuberculosis H37Rv is of modest virulence and is drug susceptible, in the present study, we performed a nuclear magnetic resonance-based metabolomic analysis of lung tissues and serum obtained from guinea pigs infected by low dose aerosol exposure to clinical isolates of Mycobacterium tuberculosis. High Resolution Magic Angle Spinning NMR coupled with multivariate statistical analysis of 159 lung tissues obtained from multiple locations of age-matched naïve and 30 and 60 days of infected guinea pig lungs revealed a wide dispersal of metabolic patterns, but within these, distinct clusters of signatures could be seen that differentiated between naive control and infected animals. Several metabolites were identified that changed in concert with the progression of each infection. Major metabolites that could be interpreted as indicating host glutaminolysis were consistent with activated host immune cells encountering increasingly hypoxic conditions in the necrotic lung lesions. Moreover, glutathione levels were constantly elevated, probably in response to oxygen radical production in these lesions. Additional distinct signatures were also seen in infected serum, with altered levels of several metabolites. Multivariate statistical analysis clearly differentiated the infected from the uninfected sera; in addition, Receiver Operator Characteristic curve generated with principal component 1 scores showed an area under the curve of 0.908. These data raise optimism that discrete metabolomic signatures can be defined that can predict the progression of the tuberculosis disease process, and form the basis of an innovative and rapid diagnostic process.


Assuntos
Metaboloma , Mycobacterium tuberculosis/fisiologia , Tuberculose Pulmonar/sangue , Acetatos/sangue , Monofosfato de Adenosina/sangue , Animais , Colina/sangue , Epidemias , Etanolamina/sangue , Formiatos/sangue , Ácido Glutâmico/sangue , Glutamina/sangue , Cobaias , Interações Hospedeiro-Patógeno , Ácido Láctico/sangue , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Espectroscopia de Ressonância Magnética , Análise Multivariada , Niacinamida/sangue , Fosfocreatina/sangue , Análise de Componente Principal , Curva ROC , Tuberculoma/metabolismo , Tuberculoma/microbiologia , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/microbiologia
14.
J Infect Dis ; 203(9): 1240-8, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21357942

RESUMO

BACKGROUND: Cigarette smoke (CS) exposure is an epidemiological risk factor for tuberculosis, although the biological basis has not been elucidated. METHODS: We exposed C57BL/6 mice to CS for 14 weeks and examined their ability to control an aerosol infection of Mycobacterium tuberculosis Erdman. RESULTS: CS-exposed mice had more M. tuberculosis isolated from the lungs and spleens after 14 and 30 d, compared with control mice. The CS-exposed mice had worse lung lesions and less lung and splenic macrophages and dendritic cells (DCs) producing interleukin12 and tumor necrosis factor α (TNF-α). There were significantly more interleukin 10-producing macrophages and DCs in the spleens of infected CS-exposed mice than in non-CS-exposed controls. CS-exposed mice also showed a diminished influx of interferon γ-producing and TNF-α-producing CD4(+) and CD8(+) effector and memory T cells into the lungs and spleens. There was a trend toward an increased number of viable intracellular M. tuberculosis in macrophages isolated from humans who smoke compared with nonsmokers. THP-1 human macrophages and primary human alveolar macrophages exposed to CS extract, nicotine, or acrolein showed an increased burden of intracellular M. tuberculosis. CONCLUSION: CS suppresses the protective immune response to M. tuberculosis in mice, human THP-1 cells, and primary human alveolar macrophages.


Assuntos
Suscetibilidade a Doenças , Mycobacterium tuberculosis/imunologia , Fumar/efeitos adversos , Tuberculose/imunologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL
15.
Microbiol Spectr ; 10(3): e0169321, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35652642

RESUMO

The objective of this study was to characterize the effect of Bacillus Calmette-Guérin (BCG) vaccination and M. tuberculosis infection on gut and lung microbiota of C57BL/6 mice, a well-characterized mouse model of tuberculosis. BCG vaccination and infection with M. tuberculosis altered the relative abundance of Firmicutes and Bacteroidetes phyla in the lung compared with control group. Vaccination and infection changed the alpha- and beta-diversity in both the gut and the lung. However, lung diversity was the most affected organ after BCG vaccination and M. tuberculosis infection. Focusing on the gut-lung axis, a multivariate regression approach was used to compare profile evolution of gut and lung microbiota. More genera have modified relative abundances associated with BCG vaccination status at gut level compared with lung. Conversely, genera with modified relative abundances associated with M. tuberculosis infection were numerous at lung level. These results indicated that the host local response against infection impacted the whole microbial flora, while the immune response after vaccination modified mainly the gut microbiota. This study showed that a subcutaneous vaccination with a live attenuated microorganism induced both gut and lung dysbiosis that may play a key role in the immunopathogenesis of tuberculosis. IMPORTANCE The microbial communities in gut and lung are important players that may modulate the immunity against tuberculosis or other infections as well as impact the vaccine efficacy. We discovered that vaccination through the subcutaneous route affect the composition of gut and lung bacteria, and this might influence susceptibility and defense mechanisms against tuberculosis. Through these studies, we can identify microbial communities that can be manipulated to improve vaccine response and develop treatment adjuvants.


Assuntos
Microbioma Gastrointestinal , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Animais , Vacina BCG , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Tuberculose/microbiologia , Vacinação
16.
Cell Rep ; 41(11): 111783, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516760

RESUMO

Bacille Calmette-Guerin (BCG) is the only licensed vaccine against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB) disease. However, BCG has limited efficacy, necessitating the development of better vaccines. Non-tuberculous mycobacteria (NTMs) are opportunistic pathogens present ubiquitously in the environment. TB endemic countries experience higher exposure to NTMs, but previous studies have not elucidated the relationship between NTM exposure and BCG efficacy against TB. Therefore, we develop a mouse model (BCG + NTM) to simulate human BCG immunization regime and continuous NTM exposure. BCG + NTM mice exhibit superior and prolonged protection against pulmonary TB, with increased B cell influx and anti-Mtb antibodies in serum and airways, compared with BCG alone. Notably, spatial transcriptomics and immunohistochemistry reveal that BCG + NTM mice formed B cell aggregates with features of germinal center development, which correlate with reduced Mtb burden. Our studies suggest a direct relationship between NTM exposure and TB protection, with B cells playing a crucial role.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Camundongos , Humanos , Animais , Vacina BCG , Micobactérias não Tuberculosas , Imunidade Celular
17.
Front Nutr ; 9: 960409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185653

RESUMO

Background: SARS-CoV-2 has infected millions across the globe. Many individuals are left with persistent symptoms, termed post-acute sequelae of COVID-19 (PASC), for months after infection. Hyperinflammation in the acute and convalescent stages has emerged as a risk factor for poor disease outcomes, and this may be exacerbated by dietary inadequacies. Specifically, fatty acids are powerful inflammatory mediators and may have a significant role in COVID-19 disease modulation. Objective: The major objective of this project was to pilot an investigation of plasma fatty acid (PFA) levels in adults with COVID-19 and to evaluate associations with disease severity and PASC. Methods and procedures: Plasma from adults with (N = 41) and without (N = 9) COVID-19 was analyzed by gas chromatography-mass spectrometry (GC-MS) to assess differences between the concentrations of 18 PFA during acute infection (≤14 days post-PCR + diagnosis) in adults with varying disease severity. Participants were grouped based on mild, moderate, and severe disease, alongside the presence of PASC, a condition identified in patients who were followed beyond acute-stage infection (N = 23). Results: Significant differences in PFA profiles were observed between individuals who experienced moderate or severe disease compared to those with mild infection or no history of infection. Palmitic acid, a saturated fat, was elevated in adults with severe disease (p = 0.04), while behenic (p = 0.03) and lignoceric acid (p = 0.009) were lower in adults with moderate disease. Lower levels of the unsaturated fatty acids, γ-linolenic acid (GLA) (p = 0.03), linoleic (p = 0.03), and eicosapentaenoic acid (EPA) (p = 0.007), were observed in adults with moderate disease. Oleic acid distinguished adults with moderate disease from severe disease (p = 0.04), and this difference was independent of BMI. Early recovery-stage depletion of GLA (p = 0.02) and EPA (p = 0.0003) was associated with the development of PASC. Conclusion: Pilot findings from this study support the significance of PFA profile alterations during COVID-19 infection and are molecular targets for follow-up attention in larger cohorts. Fatty acids are practical, affordable nutritional targets and may be beneficial for modifying the course of disease after a COVID-19 diagnosis. Moreover, these findings can be particularly important for overweight and obese adults with altered PFA profiles and at higher risk for PASC. Clinical trial registration: [ClinicalTrials.gov], identifier [NCT04603677].

18.
Antimicrob Agents Chemother ; 55(1): 124-31, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20937788

RESUMO

The experimental compound TMC207 is showing promise against infections caused by Mycobacterium tuberculosis both in a variety of animal studies and in the field. In this study, we used the guinea pig model, a species that shows several similarities to human tuberculosis, including the hallmark of primary granuloma necrosis, to determine the efficacy of a combination regimen combining TMC207 with rifampin and pyrazinamide. This drug regimen rapidly reduced the bacterial load in the lungs to undetectable levels by 8 weeks of treatment. This reduction was associated with a substantial improvement in lung pathology, but despite this effect areas of residual necrosis still remained. In the draining lymph nodes, however, tissue damage was rapid and not significantly reversed by the drug treatment. Approximately 10 to 11 months after the treatment had ended, the animals began to trigger a Karnovsky scale indicating bacterial regrowth and potential relapse, an event confirmed by the new development of both pulmonary and extrapulmonary granulomatous lesions. Interestingly, a similar rate of relapse was also seen in animals receiving 24 weeks of rifampin, pyrazinamide, and isoniazid standard chemotherapy. These data indicate that TMC207 could be a useful addition to current treatment regimens for tuberculosis.


Assuntos
Antituberculosos/uso terapêutico , Pirazinamida/uso terapêutico , Quinolinas/uso terapêutico , Rifampina/uso terapêutico , Tuberculose/tratamento farmacológico , Animais , Diarilquinolinas , Feminino , Citometria de Fluxo , Cobaias , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia
19.
Vaccines (Basel) ; 9(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34451973

RESUMO

Infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which has reached pandemic proportions. A number of effective vaccines have been produced, including mRNA vaccines and viral vector vaccines, which are now being implemented on a large scale in order to control the pandemic. The mRNA vaccines are composed of viral Spike S1 protein encoding mRNA incorporated in a lipid nanoparticle and stabilized by polyethylene glycol (PEG). The mRNA vaccines are novel in many respects, including cellular uptake and the intracellular routing, processing, and secretion of the viral protein. Viral vector vaccines have incorporated DNA sequences, encoding the SARS-CoV-2 Spike protein into (attenuated) adenoviruses. The antigen presentation routes in MHC class I and class II, in relation to the induction of virus-neutralizing antibodies and cytotoxic T-lymphocytes, will be reviewed. In rare cases, mRNA vaccines induce unwanted immune mediated side effects. The mRNA-based vaccines may lead to an anaphylactic reaction. This reaction may be triggered by PEG. The intracellular routing of PEG and potential presentation in the context of CD1 will be discussed. Adenovirus vector-based vaccines have been associated with thrombocytopenic thrombosis events. The anti-platelet factor 4 antibodies found in these patients could be generated due to conformational changes of relevant epitopes presented to the immune system.

20.
Sci Rep ; 11(1): 9040, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907221

RESUMO

The nontuberculous mycobacteria (NTM) Mycobacterium avium is a clinically significant pathogen that can cause a wide range of maladies, including tuberculosis-like pulmonary disease. An immunocompromised host status, either genetically or acutely acquired, presents a large risk for progressive NTM infections. Due to this quietly emerging health threat, we evaluated the ability of a recombinant fusion protein ID91 combined with GLA-SE [glucopyranosyl lipid adjuvant, a toll like receptor 4 agonist formulated in an oil-in-water stable nano-emulsion] to confer protection in both C57BL/6 (wild type) and Beige (immunocompromised) mouse models. We optimized an aerosol challenge model using a clinical NTM isolate: M. avium 2-151 smt, observed bacterial growth kinetics, colony morphology, drug sensitivity and histopathology, characterized the influx of pulmonary immune cells, and confirmed the immunogenicity of ID91 in both mouse models. To determine prophylactic vaccine efficacy against this M. avium isolate, mice were immunized with either ID91 + GLA-SE or bacillus Calmette-Guérin (BCG). Immunocompromised Beige mice displayed a delayed influx of innate and adaptive immune cells resulting in a sustained and increased bacterial burden in the lungs and spleen compared to C57BL/6 mice. Importantly, both ID91 + GLA-SE and BCG vaccines significantly reduced pulmonary bacterial burden in both mouse strains. This work is a proof-of-concept study of subunit vaccine-induced protection against NTM.


Assuntos
Vacina BCG/administração & dosagem , Modelos Animais de Doenças , Hospedeiro Imunocomprometido/imunologia , Mycobacterium avium/patogenicidade , Tuberculose/prevenção & controle , Vacinas de Subunidades Antigênicas/administração & dosagem , Animais , Vacina BCG/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium avium/metabolismo , Tuberculose/imunologia , Tuberculose/microbiologia , Vacinação , Vacinas de Subunidades Antigênicas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA